DONATE

Publications

by Keyword: raman-spectroscopy

Lodoso-Torrecilla, Irene, Konka, Joanna, Kreuzer, Martin, Jimenez-Pique, Emilio, Espanol, Montserrat, Ginebra, Maria-Pau, (2024). Quality assessment of regenerated bone in intraosseous and intramuscular scaffolds by spectroscopy and nanoindentation Biomaterials Advances 164, 213982

The efficiency of synthetic bone grafts can be evaluated either in osseous sites, to analyze osteoconduction or ectopically, in intramuscular or subcutaneous sites, to assess osteoinduction. Bone regeneration is usually evaluated in terms of the presence and quantity of newly formed bone, but little information is normally provided on the quality of this bone. Here, we propose a novel approach to evaluate bone quality by the combined use of spectroscopy techniques and nanoindentation. Calcium phosphate scaffolds with different architectures, either foamed or 3D-printed, that were implanted in osseous or intramuscular defects in Beagle dogs for 6 or 12 weeks were analyzed. ATR-FTIR and Raman spectroscopy were performed, and mineral-to-matrix ratio, crystallinity, and mineral and collagen maturity were calculated and mapped for the newly regenerated bone and the mature cortical bone from the same specimen. For all the parameters studied, the newly-formed bone showed lower values than the mature host bone. Hardness and elastic modulus were determined by nanoindentation and, in line with what was observed by spectroscopy, lower values were observed in the regenerated bone than in the cortical bone. While, as expected, all techniques pointed to an increase in the maturity of the newly-formed bone between 6 and 12 weeks, the bone found in the intramuscular samples after 12 weeks presented lower mineralization than the intraosseous counterparts. Moreover, scaffold architecture also played a role in bone maturity, with the foamed scaffolds showing higher mineralization and crystallinity than the 3D-printed scaffolds after 12 weeks.

JTD Keywords: Atr-ftir, Bone regeneration, Calcium-phosphate, Ectopic implantation, Implant interface, In-vivo, Indentation, Mechanical-properties, Micromechanical properties, Nanoindentation, Orthotropic implantation, Raman spectroscop, Raman-spectroscopy, Strengt, Substitutes


Molina, Brenda G, Sanz-Farnos, Julia, Sanchez, Samuel, Aleman, Carlos, (2024). Ultrasensitive flexible pressure sensor for soft contraction detection Sensors And Actuators B-Chemical 416, 136005

We report the fabrication and characterization of a highly sensitive pressure sensor that has been successfully tested using 3D-bioprinted skeletal muscle tissue. The proposed pressure sensor consists of two assembled 3D printed specimens, which were obtained using 60/40 v/v poly(3,4-ethylenedioxythiophene):polystyrene sulfonic acid (PEDOT:PSS) / poly(ethylene glycol) diacrylate (PEGDA) mixture, placed between two indium tin oxidecoated polyethylene terephthalate (PET-ITO) films. The printed specimens were shaped with a serrated structure, improving the sensitivity of the contact when pressed against PET-ITO film. Initially, the performance of the fabricated pressure sensor was tested using light cylindrical weights, which corresponded to pressures ranging from 0.99 to 14.71 kPa, and as prove of concept, carefully pressing with the finger (from 2.91 to 6.81 kPa). As the sensitivity and fast response of sensor were compatible with detection of soft muscle contractions, 3D-bioprinted skeletal muscle bioactuators were manufactured using myoblast cells. The contractions of the bioactuators, which were induced using electrical stimulation, exerted a pressure of 1.5 kPa only that was clearly and precisely detected by the sensor. Overall, the potential application of proposed pressure sensor for wearable and biomedical devices is evidenced by demonstrating its fast response time (< 50 ms) and sensitivity.

JTD Keywords: 4-ethylenedioxythiophene), Bioactuator, Healt, Hydrogels, Poly(3, Poly(ethylene glycol) diacrylate, Raman-spectroscopy, Soft electronics, Wearable electronic


Lanzalaco, S, Gil, P, Mingot, J, Agueda, A, Alemán, C, Armelin, E, (2022). Dual-Responsive Polypropylene Meshes Actuating as Thermal and SERS Sensors Acs Biomaterials Science & Engineering 8, 3329-3340

Polypropylene (PP) surgical meshes, with different knitted architectures, were chemically functionalized with gold nanoparticles (AuNPs) and 4-mercaptothiazole (4-MB) to transform their fibers into a surface enhanced Raman scattering (SERS) detectable plastic material. The application of a thin layer of poly[N-isopropylacrylamide-co-N,N'-methylene bis(acrylamide)] (PNIPAAm-co-MBA) graft copolymer, covalently polymerized to the mesh-gold substrate, caused the conversion of the inert plastic into a thermoresponsive material, resulting in the first PP implantable mesh with both SERS and temperature stimulus responses. AuNPs were homogeneously distributed over the PP yarns, offering a clear SERS recognition together with higher PNIPAAm lower critical solution temperature (LCST ∼ 37 °C) than without the metallic particles (LCST ∼ 32 °C). An infrared thermographic camera was used to observe the polymer-hydrogel folding-unfolding process and to identify the new value of the LCST, connected with the heat generation by plasmonic-resonance gold NPs. The development of SERS PP prosthesis will be relevant for the bioimaging and biomarker detection of the implant by using the plasmonic effect and Raman vibrational spectroscopy for minimally invasive interventions (such as laparoscopy), to prevent patient inflammatory processes. Furthermore, Raman sources have been proved to not damage the cells, like happens with near-infrared irradiation, representing another advantage of moving to SERS approaches. The findings reported here offer unprecedented application possibilities in the biomedical field by extrapolating the material functionalization to other nonabsorbable polymer made devices (e.g., surgical sutures, grapes, wound dressings, among others).

JTD Keywords: gold nanoparticles, poly(n-isopropylacrylamide), polymers, polypropylene, raman-spectroscopy, reduction, resonance, sers spectroscopy, size, surface functionalization, Gold nanoparticles, Polypropylene, Surface functionalization


Cascione, M, Rizzello, L, Manno, D, Serra, A, De Matteis, V, (2022). Green Silver Nanoparticles Promote Inflammation Shutdown in Human Leukemic Monocytes Materials (Basel) 15, 775

The use of silver nanoparticles (Ag NPs) in the biomedical field deserves a mindful analysis of the possible inflammatory response which could limit their use in the clinic. Despite the anti-cancer properties of Ag NPs having been widely demonstrated, there are still few studies concerning their involvement in the activation of specific inflammatory pathways. The inflammatory outcome depends on the synthetic route used in the NPs production, in which toxic reagents are employed. In this work, we compared two types of Ag NPs, obtained by two different chemical routes: conventional synthesis using sodium citrate and a green protocol based on leaf extracts as a source of reduction and capping agents. A careful physicochemical characterization was carried out showing spherical and stable Ag NPs with an average size between 20 nm and 35 nm for conventional and green Ag NPs respectively. Then, we evaluated their ability to induce the activation of inflammation in Human Leukemic Monocytes (THP-1) differentiated into M0 macrophages using 1 µM and 2 µM NPs concentrations (corresponded to 0.1 µg/mL and 0.2 µg/mL respectively) and two-time points (24 h and 48 h). Our results showed a clear difference in Nuclear Factor ?B (NF-?b) activation, Interleukins 6–8 (IL-6, IL-8) secretion, Tumor Necrosis Factor-? (TNF-?) and Cyclooxygenase-2 (COX-2) expression exerted by the two kinds of Ag NPs. Green Ag NPs were definitely tolerated by macrophages compared to conventional Ag NPs which induced the activation of all the factors mentioned above. Subsequently, the exposure of breast cancer cell line (MCF-7) to the green Ag NPs showed that they exhibited antitumor activity like the conventional ones, but surprisingly, using the MCF-10A line (not tumoral breast cells) the green Ag NPs did not cause a significant decrease in cell viability. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

JTD Keywords: activation, biosynthesis, gold nanoparticles, green route, inflammation response, mechanism, metal, nanotechnology, physico-chemical properties, raman-spectroscopy, resonance, silver nanoparticles, surface, Biomedical fields, Cell culture, Cell death, Chemical activation, Chemical routes, Conventional synthesis, Diseases, Green route, Inflammation response, Inflammatory response, Macrophages, Metal nanoparticles, Nf-kappa-b, Pathology, Physico-chemical properties, Physicochemical property, Property, Silver nanoparticles, Sodium compounds, Synthetic routes, Toxic reagents