by Keyword: samples

Pérez-Domínguez, S, Kulkarni, SG, Pabijan, J, Gnanachandran, K, Holuigue, H, Eroles, M, Lorenc, E, Berardi, M, Antonovaite, N, Marini, ML, Alonso, JL, Redonto-Morata, L, Dupres, V, Janel, S, Acharya, S, Otero, J, Navajas, D, Bielawski, K, Schillers, H, Lafont, F, Rico, F, Podestà, A, Radmacher, M, Lekka, M, (2023). Reliable, standardized measurements for cell mechanical properties Nanoscale 15, 16371-16380

Atomic force microscopy (AFM) has become indispensable for studying biological and medical samples. More than two decades of experiments have revealed that cancer cells are softer than healthy cells (for measured cells cultured on stiff substrates). The softness or, more precisely, the larger deformability of cancer cells, primarily independent of cancer types, could be used as a sensitive marker of pathological changes. The wide application of biomechanics in clinics would require designing instruments with specific calibration, data collection, and analysis procedures. For these reasons, such development is, at present, still very limited, hampering the clinical exploitation of mechanical measurements. Here, we propose a standardized operational protocol (SOP), developed within the EU ITN network Phys2BioMed, which allows the detection of the biomechanical properties of living cancer cells regardless of the nanoindentation instruments used (AFMs and other indenters) and the laboratory involved in the research. We standardized the cell cultures, AFM calibration, measurements, and data analysis. This effort resulted in a step-by-step SOP for cell cultures, instrument calibration, measurements, and data analysis, leading to the concordance of the results (Young's modulus) measured among the six EU laboratories involved. Our results highlight the importance of the SOP in obtaining a reproducible mechanical characterization of cancer cells and paving the way toward exploiting biomechanics for diagnostic purposes in clinics.

JTD Keywords: afm indentation, cancer cells, elastic-moduli, samples, stiffness, Atomic-force microscopy

Castillo-Escario, Y, Kumru, H, Ferrer-Lluis, I, Vidal, J, Jané, R, (2021). Detection of Sleep-Disordered Breathing in Patients with Spinal Cord Injury Using a Smartphone Sensors 21, 7182

Patients with spinal cord injury (SCI) have an increased risk of sleep-disordered breathing (SDB), which can lead to serious comorbidities and impact patients’ recovery and quality of life. However, sleep tests are rarely performed on SCI patients, given their multiple health needs and the cost and complexity of diagnostic equipment. The objective of this study was to use a novel smartphone system as a simple non-invasive tool to monitor SDB in SCI patients. We recorded pulse oximetry, acoustic, and accelerometer data using a smartphone during overnight tests in 19 SCI patients and 19 able-bodied controls. Then, we analyzed these signals with automatic algorithms to detect desaturation, apnea, and hypopnea events and monitor sleep position. The apnea–hypopnea index (AHI) was significantly higher in SCI patients than controls (25 ± 15 vs. 9 ± 7, p < 0.001). We found that 63% of SCI patients had moderate-to-severe SDB (AHI ? 15) in contrast to 21% of control subjects. Most SCI patients slept predominantly in supine position, but an increased occurrence of events in supine position was only observed for eight patients. This study highlights the problem of SDB in SCI and provides simple cost-effective sleep monitoring tools to facilitate the detection, understanding, and management of SDB in SCI patients.

JTD Keywords: apnea syndrome, biomedical signal processing, individuals, mhealth, monitoring, nasal resistance, people, position, prevalence, questionnaire, sample, sleep apnea, sleep position, sleep-disordered breathing, smartphone, time, Apnea-hypopnea indices, Biomedical signal processing, Biomedical signals processing, Cost effectiveness, Diagnosis, Mhealth, Monitoring, Noninvasive medical procedures, Oximeters, Oxygen-saturation, Patient rehabilitation, Simple++, Sleep apnea, Sleep position, Sleep research, Sleep-disordered breathing, Smart phones, Smartphone, Smartphones, Spinal cord injury, Spinal cord injury patients

Tort, N., Salvador, J. P., Avino, A., Eritja, R., Comelles, J., Martinez, E., Samitier, J., Marco, M. P., (2012). Synthesis of steroid-oligonucleotide conjugates for a DNA site-encoded SPR immunosensor Bioconjugate Chemistry , 23, (11), 2183-2191

The excellent self-assembling properties of DNA and the excellent specificity of the antibodies to detect analytes of small molecular weight under competitive conditions have been combined in this study. Three oligonucleotide sequences (N(1)up, N(2)up, and N(3)up) have been covalently attached to three steroidal haptens (8, hG, and 13) of three anabolic-androgenic steroids (AAS), stanozolol (ST), tetrahydrogestrinone (THG), and boldenone (B), respectively. The synthesis of steroid oligonucleotide conjugates has been performed by the reaction of oligonucleotides carrying amino groups with carboxyl acid derivatives of steroidal haptens. Due to the chemical nature of the steroid derivatives, two methods for coupling the haptens and the ssDNA have been studied: a solid-phase coupling strategy and a solution-phase coupling strategy. Specific antibodies against ST, THG, and B have been used in this study to asses the possibility of using the self-assembling properties of the DNA to prepare biofunctional SPR gold chips based on the immobilization of haptens, by hybridization with the complementary oligonucleotide strands possessing SH groups previously immobilized. The capture of the steroid oligonucleotide conjugates and subsequent binding of the specific antibodies can be monitored on the sensogram due to variations produced on the refractive index on top of the gold chip. The resulting steroid oligonucleotide conjugates retain the hybridization and specific binding properties of oligonucleotides and haptens as demonstrated by thermal denaturation experiments and surface plasmon resonance (SPR).

JTD Keywords: Directed protein immobilization, Plasmon resonance biosensor, Self-assembled monolayers, Label-free, Serum samples, Assay, Immunoassays, Antibodies, Progress, Binding

Caballero, D., Martinez, E., Bausells, J., Errachid, A., Samitier, J., (2012). Impedimetric immunosensor for human serum albumin detection on a direct aldehyde-functionalized silicon nitride surface Analytica Chimica Acta 720, 43-48

In this work we report the fabrication and characterization of a label-free impedimetric immunosensor based on a silicon nitride (Si 3N 4) surface for the specific detection of human serum albumin (HSA) proteins. Silicon nitride provides several advantages compared with other materials commonly used, such as gold, and in particular in solid-state physics for electronic-based biosensors. However, few Si 3N 4-based biosensors have been developed; the lack of an efficient and direct protocol for the integration of biological elements with silicon-based substrates is still one of its the main drawbacks. Here, we use a direct functionalization method for the direct covalent binding of monoclonal anti-HSA antibodies on an aldehyde-functionalized Si-p/SiO 2/Si 3N 4 structure. This methodology, in contrast with most of the protocols reported in literature, requires less chemical reagents, it is less time-consuming and it does not need any chemical activation. The detection capability of the immunosensor was tested by performing non-faradaic electrochemical impedance spectroscopy (EIS) measurements for the specific detection of HSA proteins. Protein concentrations within the linear range of 10 -13-10 -7M were detected, showing a sensitivity of 0.128ΩμM -1 and a limit of detection of 10 -14M. The specificity of the sensor was also addressed by studying the interferences with a similar protein, bovine serum albumin. The results obtained show that the antibodies were efficiently immobilized and the proteins detected specifically, thus, establishing the basis and the potential applicability of the developed silicon nitride-based immunosensor for the detection of proteins in real and more complex samples.

JTD Keywords: Aldehyde, Electrochemical impedance spectroscopy, Human serum albumin, Immunosensor, Silicon nitride, Bovine serum albumins, Chemical reagents, Complex samples, Covalent binding, Detection capability, Electrochemical impedance, Electrochemical impedance spectroscopy measurements, Functionalizations, Human serum albumins, Impedimetric immunosensors, Label free, Limit of detection, Linear range, Protein concentrations, Silicon-based, Specific detection, Aldehydes

Gramse, G., Gomila, G., Fumagalli, L., (2012). Quantifying the dielectric constant of thick insulators by electrostatic force microscopy: effects of the microscopic parts of the probe Nanotechnology 23, (20), 205703

We present a systematic analysis of the effects that the microscopic parts of electrostatic force microscopy probes (the cone and cantilever) have on the electrostatic interaction between the tip apex and thick insulating substrates (thickness>100mum). We discuss how these effects can influence the measurement and quantification of the local dielectric constant of the substrates. We propose and experimentally validate a general methodology that takes into account the influence of the cone and the cantilever, thus enabling us to obtain very accurate values of the dielectric constants of thick insulators.

JTD Keywords: Polarization, Samples