DONATE

Publications

by Keyword: Label-free

Sierra-Agudelo, J, Rodriguez-Trujillo, R, Samitier, J, (2022). Microfluidics for the Isolation and Detection of Circulating Tumor Cells Microfluidics And Biosensors In Cancer Research 1379, 389-412

Nowadays, liquid biopsy represents one of the most promising techniques for early diagnosis, monitoring, and therapy screening of cancer. This novel methodology includes, among other techniques, the isolation, capture, and analysis of circulating tumor cells (CTCs). Nonetheless, the identification of CTC from whole blood is challenging due to their extremely low concentration (1-100 per ml of whole blood), and traditional methods result insufficient in terms of purity, recovery, throughput and/or viability of the processed sample. In this context, the development of microfluidic devices for detecting and isolating CTCs offers a wide range of new opportunities due to their excellent properties for cell manipulation and the advantages to integrate and bring different laboratory processes into the microscale improving the sensitivity, portability, reducing cost and time. This chapter explores current and recent microfluidic approaches that have been developed for the analysis and detection of CTCs, which involve cell capture methods based on affinity binding and label-free methods and detection based on electrical, chemical, and optical sensors. All the exposed technologies seek to overcome the limitations of commercial systems for the analysis and isolation of CTCs, as well as to provide extended analysis that will allow the development of novel and more efficient diagnostic tools.© 2022. The Author(s), under exclusive license to Springer Nature Switzerland AG.

JTD Keywords: cancer detection, cancer diagnosis, cancer-cells, capture, chip, circulating tumor cells, enrichment, liquid biopsy, microchannel, separation, ultra-fast, Cancer detection, Cancer diagnosis, Circulating tumor cells, Label-free isolation, Liquid biopsy, Microfluidics


Lopez-Muñoz, GA, Mughal, S, Ramón-Azcón, J, (2022). Sensors and Biosensors in Organs-on-a-Chip Platforms Advances In Experimental Medicine And Biology 1379, 55-80

Biosensors represent a powerful analytical tool for analyzing biomolecular interactions with the potential to achieve real-time quantitative analysis with high accuracy using low sample volumes, minimum sample pretreatment with high potential for the development of in situ and highly integrated monitoring platforms. Considering these advantages, their use in cell-culture systems has increased over the last few years. Between the different technologies for cell culture, organs-on-a-chip (OOCs) represent a novel technology that tries to mimic an organ's functionality by combining tissue engineering/organoid with microfluidics. Although there are still challenges to achieving OOC models with high organ mimicking relevance, these devices can offer effective models for drug treatment development by identifying drug targets, screening toxicity, and determining the potential effects of drugs in living beings. Consequently, in the future, we might replace animal studies by offering more ethical test models. Considering the relevance that different physiological and biochemical parameters have in the correct functionality of cells, sensing and biosensing platforms can offer an effective way for the real-time monitoring of physiological parameters and, in our opinion, more relevant, the secretion of biomarkers such as cytokines, growth factors, and others related with the influence of drugs or other types of stimulus in cell metabolism. Keeping this concept in mind, in this chapter, we focus on describing the potential use of sensors and biosensors in OOC devices to achieve fully integrated platforms that monitor physiological parameters and cell metabolism.© 2022. The Author(s), under exclusive license to Springer Nature Switzerland AG.

JTD Keywords: alignment, biosensors, cell, crystal microbalance biosensor, electrochemical biosensors, future, graphene oxide, label-free detection, organ-on-a-chip, oxygen, pre-clinical platforms, real-time analysis, screening, Biosensors, Organ-on-a-chip, Pre-clinical platforms, Screening, Sensors, Surface-plasmon resonance


Lopez-Muñoz, GA, Fernández-Costa, JM, Ortega, MA, Balaguer-Trias, J, Martin-Lasierra, E, Ramón-Azcón, J, (2021). Plasmonic nanocrystals on polycarbonate substrates for direct and label-free biodetection of Interleukin-6 in bioengineered 3D skeletal muscles Nanophotonics 10, 4477-4488

Abstract The development of nanostructured plasmonic biosensors has been widely widespread in the last years, motivated by the potential benefits they can offer in integration, miniaturization, multiplexing opportunities, and enhanced performance label-free biodetection in a wide field of applications. Between them, engineering tissues represent a novel, challenging, and prolific application field for nanostructured plasmonic biosensors considering the previously described benefits and the low levels of secreted biomarkers (?pM–nM) to detect. Here, we present an integrated plasmonic nanocrystals-based biosensor using high throughput nanostructured polycarbonate substrates. Metallic film thickness and incident angle of light for reflectance measurements were optimized to enhance the detection of antibody–antigen biorecognition events using numerical simulations. We achieved an enhancement in biodetection up to 3× as the incident angle of light decreases, which can be related to shorter evanescent decay lengths. We achieved a high reproducibility between channels with a coefficient of variation below 2% in bulk refractive index measurements, demonstrating a high potential for multiplexed sensing. Finally, biosensing potential was demonstrated by the direct and label-free detection of interleukin-6 biomarker in undiluted cell culture media supernatants from bioengineered 3D skeletal muscle tissues stimulated with different concentrations of endotoxins achieving a limit of detection (LOD) of ? 0.03 ng/mL (1.4 pM).

JTD Keywords: assay, crystals, drug, label-free biosensing, molecules, plasmonic nanostructures, sensors, skeletal muscle, tissue engineering, Biodetection, Biomarkers, Biosensors, Cell culture, Cells, Chemical detection, Histology, Interleukin-6, Interleukin6 (il6), Label free, Label-free biosensing, Muscle, Nano-structured, Nanocrystals, Plasmonic nanocrystals, Plasmonic nanostructures, Plasmonics, Polycarbonate substrates, Polycarbonates, Refractive index, Sensitivity, Skeletal muscle, Tissue engineering, Tissues engineerings


Checa, M, Millan-Solsona, R, Mares, AG, Pujals, S, Gomila, G, (2021). Fast Label-Free Nanoscale Composition Mapping of Eukaryotic Cells Via Scanning Dielectric Force Volume Microscopy and Machine Learning Small Methods 5, 2100279

Mapping the biochemical composition of eukaryotic cells without the use of exogenous labels is a long-sought objective in cell biology. Recently, it has been shown that composition maps on dry single bacterial cells with nanoscale spatial resolution can be inferred from quantitative nanoscale dielectric constant maps obtained with the scanning dielectric microscope. Here, it is shown that this approach can also be applied to the much more challenging case of fixed and dry eukaryotic cells, which are highly heterogeneous and show micrometric topographic variations. More importantly, it is demonstrated that the main bottleneck of the technique (the long computation times required to extract the nanoscale dielectric constant maps) can be shortcut by using supervised neural networks, decreasing them from weeks to seconds in a wokstation computer. This easy-to-use data-driven approach opens the door for in situ and on-the-fly label free nanoscale composition mapping of eukaryotic cells with scanning dielectric microscopy. © 2021 The Authors. Small Methods published by Wiley-VCH GmbH

JTD Keywords: eukaryotic cells, label-free mapping, machine learning, nanoscale, scanning dielectric microscopy, Biochemical composition, Cells, Constant, Cytology, Data-driven approach, Dielectric forces, Dielectric materials, Eukaryotic cells, Label-free mapping, Machine learning, Mapping, Nanoscale, Nanoscale composition, Nanoscale spatial resolution, Nanotechnology, Scanning, Scanning dielectric microscopy, Supervised neural networks


Lopez-Muñoz, Gerardo A., Ortega, Maria Alejandra, Ferret-Miñana, Ainhoa, De Chiara, Francesco, Ramón-Azcón, Javier, (2020). Direct and label-free monitoring of albumin in 2D fatty liver disease model using plasmonic nanogratings Nanomaterials 10, (12), 2520

Non-alcoholic fatty liver (NAFLD) is a metabolic disorder related to a chronic lipid accumulation within the hepatocytes. This disease is the most common liver disorder worldwide, and it is estimated that it is present in up to 25% of the world’s population. However, the real prevalence of this disease and the associated disorders is unknown mainly because reliable and applicable diagnostic tools are lacking. It is known that the level of albumin, a pleiotropic protein synthesized by hepatocytes, is correlated with the correct function of the liver. The development of a complementary tool that allows direct, sensitive, and label-free monitoring of albumin secretion in hepatocyte cell culture can provide insight into NAFLD’s mechanism and drug action. With this aim, we have developed a simple integrated plasmonic biosensor based on gold nanogratings from periodic nanostructures present in commercial Blu-ray optical discs. This sensor allows the direct and label-free monitoring of albumin in a 2D fatty liver disease model under flow conditions using a highly-specific polyclonal antibody. This technology avoids both the amplification and blocking steps showing a limit of detection within pM range (≈0.26 ng/mL). Thanks to this technology, we identified the optimal fetal bovine serum (FBS) concentration to maximize the cells’ lipid accumulation. Moreover, we discovered that the hepatocytes increased the amount of albumin secreted on the third day from the lipids challenge. These data demonstrate the ability of hepatocytes to respond to the lipid stimulation releasing more albumin. Further investigation is needed to unveil the biological significance of that cell behavior.

JTD Keywords: 2D fatty liver in vitro model, Blu-Ray disc, Plasmonic nanomaterials, Label-Free Biosensing


Barreiros dos Santos, M., Azevedo, S., Agusil, J. P., Prieto-Simón, B., Sporer, C., Torrents, E., Juárez, A., Teixeira, V., Samitier, J., (2015). Label-free ITO-based immunosensor for the detection of very low concentrations of pathogenic bacteria Bioelectrochemistry , 101, 146-152

Abstract Here we describe the fabrication of a highly sensitive and label-free ITO-based impedimetric immunosensor for the detection of pathogenic bacteria Escherichia coli O157:H7. Anti-E. coli antibodies were immobilized onto ITO electrodes using a simple, robust and direct methodology. First, the covalent attachment of epoxysilane on the ITO surface was demonstrated by Atomic Force Microscopy and cyclic voltammetry. The immobilization of antibody on the epoxysilane layer was quantified by Optical Waveguide Lightmode Spectroscopy, obtaining a mass variation of 12 ng cm− 2 (0.08 pmol cm− 2). Microcontact printing and fluorescence microscopy were used to demonstrate the specific binding of E. coli O157:H7 to the antibody-patterned surface. We achieved a ratio of 1:500 Salmonella typhimurium/E. coli O157:H7, thus confirming the selectivity of the antibodies and efficiency of the functionalization procedure. Finally, the detection capacity of the ITO-based immunosensor was evaluated by Electrochemical Impedance Spectroscopy. A very low limit of detection was obtained (1 CFU mL− 1) over a large linear working range (10–106 CFU mL− 1). The specificity of the impedimetric immunosensor was also examined. Less than 20% of non-specific bacteria (S. typhimurium and E. coli K12) was observed. Our results reveal the applicability of ITO for the development of highly sensitive and selective impedimetric immunosensors.

JTD Keywords: E. coli O157:H7, Electrochemical Impedance Spectroscopy, Immunosensor, Indium tin oxide, Label-free detection


Tort, N., Salvador, J. P., Avino, A., Eritja, R., Comelles, J., Martinez, E., Samitier, J., Marco, M. P., (2012). Synthesis of steroid-oligonucleotide conjugates for a DNA site-encoded SPR immunosensor Bioconjugate Chemistry , 23, (11), 2183-2191

The excellent self-assembling properties of DNA and the excellent specificity of the antibodies to detect analytes of small molecular weight under competitive conditions have been combined in this study. Three oligonucleotide sequences (N(1)up, N(2)up, and N(3)up) have been covalently attached to three steroidal haptens (8, hG, and 13) of three anabolic-androgenic steroids (AAS), stanozolol (ST), tetrahydrogestrinone (THG), and boldenone (B), respectively. The synthesis of steroid oligonucleotide conjugates has been performed by the reaction of oligonucleotides carrying amino groups with carboxyl acid derivatives of steroidal haptens. Due to the chemical nature of the steroid derivatives, two methods for coupling the haptens and the ssDNA have been studied: a solid-phase coupling strategy and a solution-phase coupling strategy. Specific antibodies against ST, THG, and B have been used in this study to asses the possibility of using the self-assembling properties of the DNA to prepare biofunctional SPR gold chips based on the immobilization of haptens, by hybridization with the complementary oligonucleotide strands possessing SH groups previously immobilized. The capture of the steroid oligonucleotide conjugates and subsequent binding of the specific antibodies can be monitored on the sensogram due to variations produced on the refractive index on top of the gold chip. The resulting steroid oligonucleotide conjugates retain the hybridization and specific binding properties of oligonucleotides and haptens as demonstrated by thermal denaturation experiments and surface plasmon resonance (SPR).

JTD Keywords: Directed protein immobilization, Plasmon resonance biosensor, Self-assembled monolayers, Label-free, Serum samples, Assay, Immunoassays, Antibodies, Progress, Binding