DONATE

Publications

by Keyword: spatiotemporal control

Camerin, Luisa, Maleeva, Galyna, Gomila, Alexandre M J, Suarez-Pereira, Irene, Matera, Carlo, Prischich, Davia, Opar, Ekin, Riefolo, Fabio, Berrocoso, Esther, Gorostiza, Pau, (2024). Photoswitchable Carbamazepine Analogs for Non-Invasive Neuroinhibition In Vivo Angewandte Chemie (International Ed. Print) 63, e202403636

A problem of systemic pharmacotherapy is off-target activity, which causes adverse effects. Outstanding examples include neuroinhibitory medications like antiseizure drugs, which are used against epilepsy and neuropathic pain but cause systemic side effects. There is a need of drugs that inhibit nerve signals locally and on-demand without affecting other regions of the body. Photopharmacology aims to address this problem with light-activated drugs and localized illumination in the target organ. Here, we have developed photoswitchable derivatives of the widely prescribed antiseizure drug carbamazepine. For that purpose, we expanded our method of ortho azologization of tricyclic drugs to meta/para and to N-bridged diazocine. Our results validate the concept of ortho cryptoazologs (uniquely exemplified by Carbazopine-1) and bring to light Carbadiazocine (8), which can be photoswitched between 400-590 nm light (using violet LEDs and halogen lamps) and shows good drug-likeness and predicted safety. Both compounds display photoswitchable activity in vitro and in translucent zebrafish larvae. Carbadiazocine (8) also offers in vivo analgesic efficacy (mechanical and thermal stimuli) in a rat model of neuropathic pain and a simple and compelling treatment demonstration with non-invasive illumination.

JTD Keywords: Antiepileptic drugs, Anxiet, Azobenzene, Diazocine, Epileps, Ion channels, Neuromodulation, Optical control, Pain, Photopharmacology, Rat, Receptors, Release, Spatiotemporal control, Tricyclic drugs, Zebrafish


Puiggalí-Jou, A, Babeli, I, Roa, JJ, Zoppe, JO, Garcia-Amorós, J, Ginebra, MP, Alemán, C, García-Torres, J, (2021). Remote Spatiotemporal Control of a Magnetic and Electroconductive Hydrogel Network via Magnetic Fields for Soft Electronic Applications Acs Applied Materials & Interfaces 13, 42486-42501

Multifunctional hydrogels are a class of materials offering new opportunities for interfacing living organisms with machines due to their mechanical compliance, biocompatibility, and capacity to be triggered by external stimuli. Here, we report a dual magnetic- and electric-stimuli-responsive hydrogel with the capacity to be disassembled and reassembled up to three times through reversible cross-links. This allows its use as an electronic device (e.g., temperature sensor) in the cross-linked state and spatiotemporal control through narrow channels in the disassembled state via the application of magnetic fields, followed by reassembly. The hydrogel consists of an interpenetrated polymer network of alginate (Alg) and poly(3,4-ethylenedioxythiophene) (PEDOT), which imparts mechanical and electrical properties, respectively. In addition, the incorporation of magnetite nanoparticles (Fe3O4 NPs) endows the hydrogel with magnetic properties. After structural, (electro)chemical, and physical characterization, we successfully performed dynamic and continuous transport of the hydrogel through disassembly, transporting the polymer-Fe3O4 NP aggregates toward a target using magnetic fields and its final reassembly to recover the multifunctional hydrogel in the cross-linked state. We also successfully tested the PEDOT/Alg/Fe3O4 NP hydrogel for temperature sensing and magnetic hyperthermia after various disassembly/re-cross-linking cycles. The present methodology can pave the way to a new generation of soft electronic devices with the capacity to be remotely transported.

JTD Keywords: conductive hydrogel, constructs, magnetic field, magnetite nanoparticle, nanoindentation, soft electronics, spatiotemporal control, Conductive hydrogel, Conductive hydrogels, Magnetic field, Magnetite nanoparticle, Soft electronics, Spatiotemporal control


Barbero-Castillo, A, Riefolo, F, Matera, C, Caldas-Martínez, S, Mateos-Aparicio, P, Weinert, JF, Garrido-Charles, A, Claro, E, Sanchez-Vives, MV, Gorostiza, P, (2021). Control of Brain State Transitions with a Photoswitchable Muscarinic Agonist Advanced Science 8, 2005027

The ability to control neural activity is essential for research not only in basic neuroscience, as spatiotemporal control of activity is a fundamental experimental tool, but also in clinical neurology for therapeutic brain interventions. Transcranial-magnetic, ultrasound, and alternating/direct current (AC/DC) stimulation are some available means of spatiotemporal controlled neuromodulation. There is also light-mediated control, such as optogenetics, which has revolutionized neuroscience research, yet its clinical translation is hampered by the need for gene manipulation. As a drug-based light-mediated control, the effect of a photoswitchable muscarinic agonist (Phthalimide-Azo-Iper (PAI)) on a brain network is evaluated in this study. First, the conditions to manipulate M2 muscarinic receptors with light in the experimental setup are determined. Next, physiological synchronous emergent cortical activity consisting of slow oscillations-as in slow wave sleep-is transformed into a higher frequency pattern in the cerebral cortex, both in vitro and in vivo, as a consequence of PAI activation with light. These results open the way to study cholinergic neuromodulation and to control spatiotemporal patterns of activity in different brain states, their transitions, and their links to cognition and behavior. The approach can be applied to different organisms and does not require genetic manipulation, which would make it translational to humans.

JTD Keywords: brain states, light-mediated control, muscarinic acetylcholine receptors, neuromodulation, Activation, Alternating/direct currents, Basal forebrain, Brain, Brain states, Clinical research, Clinical translation, Controlled drug delivery, Cortex, Forebrain cholinergic system, Genetic manipulations, Higher frequencies, Hz oscillation, Light‐, Light-mediated control, Mediated control, Muscarinic acetylcholine receptors, Muscarinic agonists, Muscarinic receptor, Neurology, Neuromodulation, Neurons, Noradrenergic modulation, Parvalbumin-positive interneurons, Photopharmacology, Receptor-binding, Slow, Spatiotemporal control, Spatiotemporal patterns