by Keyword: strain

Yang, Bingquan, Wang, Yangxin, Vorobii, Mariia, Sauter, Eric, Koenig, Meike, Kumar, Ravi, Rodriguez-Emmenegger, Cesar, Hirtz, Michael, (2022). Evaluation of Dibenzocyclooctyne and Bicyclononyne Click Reaction on Azido-Functionalized Antifouling Polymer Brushes via Microspotting Advanced Materials Interfaces 9, 2102325

Guallar-Garrido, Sandra, Almiñana-Rapún, Farners, Campo-Pérez, Víctor, Torrents, Eduard, Luquin, Marina, Julián, Esther, (2022). BCG Substrains Change Their Outermost Surface as a Function of Growth Media Vaccines 10, 40

Mycobacterium bovis bacillus Calmette-Guérin (BCG) efficacy as an immunotherapy tool can be influenced by the genetic background or immune status of the treated population and by the BCG substrain used. BCG comprises several substrains with genetic differences that elicit diverse phenotypic characteristics. Moreover, modifications of phenotypic characteristics can be influenced by culture conditions. However, several culture media formulations are used worldwide to produce BCG. To elucidate the influence of growth conditions on BCG characteristics, five different substrains were grown on two culture media, and the lipidic profile and physico-chemical properties were evaluated. Our results show that each BCG substrain displays a variety of lipidic profiles on the outermost surface depending on the growth conditions. These modifications lead to a breadth of hydrophobicity patterns and a different ability to reduce neutral red dye within the same BCG substrain, suggesting the influence of BCG growth conditions on the interaction between BCG cells and host cells.

JTD Keywords: cell wall, efficacy, glycerol, hydrophobicity, lipid, neutral red, pdim, pgl, protein, strains, viability, virulence, Acylglycerol, Albumin, Article, Asparagine, Bacterial cell wall, Bacterial gene, Bacterium culture, Bcg vaccine, Catalase, Cell wall, Chloroform, Controlled study, Escherichia coli, Gene expression, Genomic dna, Glycerol, Glycerol monomycolate, Hexadecane, Housekeeping gene, Hydrophobicity, Immune response, Immunogenicity, Immunotherapy, Lipid, Lipid fingerprinting, Magnesium sulfate, Mercaptoethanol, Methanol, Methylglyoxal, Molybdatophosphoric acid, Mycobacterium bovis bcg, Neutral red, Nonhuman, Pdim, Petroleum ether, Pgl, Phenotype, Physical chemistry, Real time reverse transcription polymerase chain reaction, Rna 16s, Rna extraction, Rv0577, Staining, Thin layer chromatography, Unclassified drug

Júnior C, Narciso M, Marhuenda E, Almendros I, Farré R, Navajas D, Otero J, Gavara N, (2021). Baseline stiffness modulates the non-linear response to stretch of the extracellular matrix in pulmonary fibrosis International Journal Of Molecular Sciences 22,

Pulmonary fibrosis (PF) is a progressive disease that disrupts the mechanical homeostasis of the lung extracellular matrix (ECM). These effects are particularly relevant in the lung context, given the dynamic nature of cyclic stretch that the ECM is continuously subjected to during breathing. This work uses an in vivo model of pulmonary fibrosis to characterize the macro-and micromechanical properties of lung ECM subjected to stretch. To that aim, we have compared the micromechanical properties of fibrotic ECM in baseline and under stretch conditions, using a novel combination of Atomic Force Microscopy (AFM) and a stretchable membrane-based chip. At the macroscale, fibrotic ECM displayed strain-hardening, with a stiffness one order of magnitude higher than its healthy counterpart. Conversely, at the microscale, we found a switch in the stretch-induced mechanical behaviour of the lung ECM from strain-hardening at physiological ECM stiffnesses to strain-softening at fibrotic ECM stiffnesses. Similarly, we observed solidification of healthy ECM versus fluidization of fibrotic ECM in response to stretch. Our results suggest that the mechanical behaviour of fibrotic ECM under stretch involves a potential built-in mechanotransduction mechanism that may slow down the progression of PF by steering resident fibroblasts away from a pro-fibrotic profile. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

JTD Keywords: atomic force microscopy, extracellular matrix, fibrosis, mechanics, mechanosensing, strain, system, viscoelasticity, Atomic force microscopy, Extracellular matrix, Fibrosis, Lung fibrosis, Mechanosensing

Wang, S., Hu, Y., Burgués, J., Marco, S., Liu, S.-L., (2020). Prediction of gas concentration using gated recurrent neural networks 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS) , IEEE (Genova, Italy) , 178-182

Low-cost gas sensors allow for large-scale spatial monitoring of air quality in the environment. However they require calibration before deployment. Methods such as multivariate regression techniques have been applied towards sensor calibration. In this work, we propose instead, the use of deep learning methods, particularly, recurrent neural networks for predicting the gas concentrations based on the outputs of these sensors. This paper presents a first study of using Gated Recurrent Unit (GRU) neural network models for gas concentration prediction. The GRU networks achieve on average, a 44.69% and a 25.17% RMSE improvement in concentration prediction on a gas dataset when compared with Support Vector Regression (SVR) and Multilayer Perceptron (MLP) models respectively. With the current advances in deep network hardware accelerators, these networks can be combined with the sensors for a compact embedded system suitable for edge applications.

JTD Keywords: Robot sensing systems, Predictive models, Logic gates, Gas detectors, Training, Temperature measurement, Support vector machines

Mas, S., Torro, A., Bec, N., Fernández, L., Erschov, G., Gongora, C., Larroque, C., Martineau, P., de Juan, A., Marco, S., (2019). Use of physiological information based on grayscale images to improve mass spectrometry imaging data analysis from biological tissues Analytica Chimica Acta 1074, 69-79

The characterization of cancer tissues by matrix-assisted laser desorption ionization-mass spectrometry images (MALDI-MSI) is of great interest because of the power of MALDI-MS to understand the composition of biological samples and the imaging side that allows for setting spatial boundaries among tissues of different nature based on their compositional differences. In tissue-based cancer research, information on the spatial location of necrotic/tumoral cell populations can be approximately known from grayscale images of the scanned tissue slices. This study proposes as a major novelty the introduction of this physiologically-based information to help in the performance of unmixing methods, oriented to extract the MS signatures and distribution maps of the different tissues present in biological samples. Specifically, the information gathered from grayscale images will be used as a local rank constraint in Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) for the analysis of MALDI-MSI of cancer tissues. The use of this constraint, setting absence of certain kind of tissues only in clear zones of the image, will help to improve the performance of MCR-ALS and to provide a more reliable definition of the chemical MS fingerprint and location of the tissues of interest. The general strategy to address the analysis of MALDI-MSI of cancer tissues will involve the study of the MCR-ALS results and the posterior use of MCR-ALS scores as dimensionality reduction for image segmentation based on K-means clustering. The resolution method will provide the MS signatures and their distribution maps for each tissue in the sample. Then, the resolved distribution maps for each biological component (MCR scores) will be submitted as initial information to K-means clustering for image segmentation to obtain information on the boundaries of the different tissular regions in the samples studied. MCR-ALS prior to K-means not only provides the desired dimensionality reduction, but additionally resolved non-biological signal contributions are not used and the weight given to the different biological components in the segmentation process can be modulated by suitable preprocessing methods.

JTD Keywords: MCR-ALS, K-means, Local rank constraints, MALDI-MSI, Grayscale images

Farré, N., Otero, J., Falcones, B., Torres, M., Jorba, I., Gozal, D., Almendros, I., Farré, R., Navajas, D., (2018). Intermittent hypoxia mimicking sleep apnea increases passive stiffness of myocardial extracellular matrix. A multiscale study Frontiers in Physiology 9, Article 1143

Background: Tissue hypoxia-reoxygenation characterizes obstructive sleep apnea (OSA), a very prevalent respiratory disease associated with increased cardiovascular morbidity and mortality. Experimental studies indicate that intermittent hypoxia (IH) mimicking OSA induces oxidative stress and inflammation in heart tissue at the cell and molecular levels. However, it remains unclear whether IH modifies the passive stiffness of the cardiac tissue extracellular matrix (ECM). Aim: To investigate multiscale changes of stiffness induced by chronic IH in the ECM of left ventricular (LV) myocardium in a murine model of OSA. Methods: Two-month and 18-month old mice (N = 10 each) were subjected to IH (20% O2 40 s–6% O2 20 s) for 6 weeks (6 h/day). Corresponding control groups for each age were kept under normoxia. Fresh LV myocardial strips (~7 mm × 1 mm × 1 mm) were prepared, and their ECM was obtained by decellularization. Myocardium ECM macroscale mechanics were measured by performing uniaxial stress–strain tensile tests. Strip macroscale stiffness was assessed as the stress value (σ) measured at 0.2 strain and Young’s modulus (EM) computed at 0.2 strain by fitting Fung’s constitutive model to the stress–strain relationship. ECM stiffness was characterized at the microscale as the Young’s modulus (Em) measured in decellularized tissue slices (~12 μm tick) by atomic force microscopy. Results: Intermittent hypoxia induced a ~1.5-fold increase in σ (p < 0.001) and a ~2.5-fold increase in EM (p < 0.001) of young mice as compared with normoxic controls. In contrast, no significant differences emerged in Em among IH-exposed and normoxic mice. Moreover, the mechanical effects of IH on myocardial ECM were similar in young and aged mice. Conclusion: The marked IH-induced increases in macroscale stiffness of LV myocardium ECM suggests that the ECM plays a role in the cardiac dysfunction induced by OSA. Furthermore, absence of any significant effects of IH on the microscale ECM stiffness suggests that the significant increases in macroscale stiffening are primarily mediated by 3D structural ECM remodeling.

JTD Keywords: Atomic force microscopy, Heart mechanics, Myocardial stiffness, Obstructive sleep apnea, Tensile test, Ventricular strain

Farré, N., Jorba, I., Torres, M., Falcones, B., Martí-Almor, J., Farré, R., Almendros, I., Navajas, D., (2018). Passive stiffness of left ventricular myocardial tissue is reduced by ovariectomy in a post-menopause mouse model Frontiers in Physiology 9, Article 1545

Background: Heart failure (HF) – a very prevalent disease with high morbidity and mortality – usually presents with diastolic dysfunction. Although post-menopause women are at increased risk of HF and diastolic dysfunction, poor attention has been paid to clinically and experimentally investigate this group of patients. Specifically, whether myocardial stiffness is affected by menopause is unknown. Aim: To investigate whether loss of female sexual hormones modifies the Young’s modulus (E) of left ventricular (LV) myocardial tissue in a mouse model of menopause induced by ovariectomy (OVX). Methods: After 6 months of bilateral OVX, eight mice were sacrificed, fresh LV myocardial strips were prepared (∼8 × 1 × 1 mm), and their passive stress–stretch relationship was measured. E was computed by exponential fitting of the stress–stretch relationship. Subsequently, to assess the relative role of cellular and extracellular matrix components in determining OVX-induced changes in E, the tissues strips were decellularized and subjected to the same stretching protocol to measure E. A control group of eight sham-OVX mice was simultaneously studied. Results: E (kPa; m ± SE) in OVX mice was ∼twofold lower than in controls (11.7 ± 1.8 and 22.1 ± 4.4, respectively; p < 0.05). No significant difference between groups was found in E of the decellularized tissue (31.4 ± 12.05 and 40.9 ± 11.5, respectively; p = 0.58). Conclusion: Loss of female sexual hormones in an OVX model induces a reduction in the passive stiffness of myocardial tissue, suggesting that active relaxation should play a counterbalancing role in diastolic dysfunction in post-menopausal women with HF.

JTD Keywords: Decellularized tissue, Female hormones, Heart tissue, Ovariectomy, Stress-strain

Argerich, S., Herrera, S., Benito, S., Giraldo, J., (2016). Evaluation of periodic breathing in respiratory flow signal of elderly patients using SVM and linear discriminant analysis Engineering in Medicine and Biology Society (EMBC) 38th Annual International Conference of the IEEE , IEEE (Orlando, USA) , 4276-4279

Aging population is a major concern that is reflected in the increase of chronic diseases. Heart Failure (HF) is one of the most common chronic diseases of elderly people that is punctuated with acute episodes, which result in hospitalization. The periodic modulation of the amplitude of the breathing pattern is proved to be one of the multiple symptoms of an acute episode, and thus, the features extracted from its characterization contribute in the improvement of the first diagnosis of the clinical practice. The main objective of this study is to evaluate if the features extracted from the breathing pattern along with common clinical variables are reliable enough to detect Periodic Breathing (PB). A dataset of 44 elderly patients containing clinical information and a short record of electrocardiogram and respiratory flow signal was used to train two machine learning classification methods: Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA). All the available clinical parameters within the dataset along with the parameters characterizing the respiratory pattern were used to classify the observations into two groups. SVM classification was optimized and performed using a = -8 and C = 10.04 giving an accuracy of 88.2 % sensitivity of 90 % and specificity of 85.7 % Similar results were achieved with LDA classifying with an accuracy of 82.4 %, a sensitivity of 81.8% and specificity of 83.3 % PB has been accurately detected using both classifiers.

JTD Keywords: Support vector machines, Feature extraction, Training, Senior citizens, Standards, Training data, Hospitals

Vedula, Sri Ram Krishna, Ravasio, Andrea, Anon, Ester, Chen, Tianchi, Peyret, G., Ashraf, Mohammed, Ladoux, Benoit, (2014). Microfabricated environments to study collective cell behaviors Methods in Cell Biology (ed. Piel, M., Théry, M.), Academic Press 120, 235-252

Abstract Coordinated cell movements in epithelial layers are essential for proper tissue morphogenesis and homeostasis. Microfabrication techniques have proven to be very useful for studies of collective cell migration in vitro. In this chapter, we briefly review the use of microfabricated substrates in providing new insights into collective cell behaviors. We first describe the development of micropatterned substrates to study the influence of geometrical constraints on cell migration and coordinated movements. Then, we present an alternative method based on microfabricated pillar substrates to create well-defined gaps within cell sheets and study gap closure. We also provide a discussion that presents possible pitfalls and sheds light onto the important parameters that allow the study of long-term cell culture on substrates of well-defined geometries.

JTD Keywords: Microfabricated substrates, Microcontact printing, Collective cell behavior, Geometrical constraints, Epithelial gap closure

Pedro, L., Banos, R. C., Aznar, S., Madrid, C., Balsalobre, C., Juarez, A., (2011). Antibiotics shaping bacterial genome: Deletion of an IS91 flanked virulence determinant upon exposure to subinhibitory antibiotic concentrations PLoS ONE 6, (11), 11

The nucleoid-associated proteins Hha and YdgT repress the expression of the toxin a-hemolysin. An Escherichia coli mutant lacking these proteins overexpresses the toxin a-hemolysin encoded in the multicopy recombinant plasmid pANN202-312R. Unexpectedly, we could observe that this mutant generated clones that no further produced hemolysin (Hly(-)). Generation of Hly(-) clones was dependent upon the presence in the culture medium of the antibiotic kanamycin (km), a marker of the hha allele (hha::Tn5). Detailed analysis of different Hly(-) clones evidenced that recombination between partial IS91 sequences that flank the hly operon had occurred. A fluctuation test evidenced that the presence of km in the culture medium was underlying the generation of these clones. A decrease of the km concentration from 25 mg/l to 12.5 mg/l abolished the appearance of Hly(-) derivatives. We considered as a working hypothesis that, when producing high levels of the toxin (combination of the hha ydgT mutations with the presence of the multicopy hemolytic plasmid pANN202-312R), the concentration of km of 25 mg/l resulted subinhibitory and stimulated the recombination between adjacent IS91 flanking sequences. To further test this hypothesis, we analyzed the effect of subinhibitory km concentrations in the wild type E. coli strain MG1655 harboring the parental low copy number plasmid pHly152. At a km concentration of 5 mg/l, subinhibitory for strain MG1655 (pHly152), generation of Hly(-) clones could be readily detected. Similar results were also obtained when, instead of km, ampicillin was used. IS91 is flanking several virulence determinants in different enteric bacterial pathogenic strains from E. coli and Shigella. The results presented here evidence that stress generated by exposure to subinhibitory antibiotic concentrations may result in rearrangements of the bacterial genome. Whereas some of these rearrangements may be deleterious, others may generate genotypes with increased virulence, which may resume infection.

JTD Keywords: Promotes horizontal dissemination, Enterica serovar typhimurium, Escherichia-coli strains, Insertion-sequence IS91, H-NS, Adaptive amplification, Pathogenicity islands, Hemolysin

Frigola, M., Vinagre, M., Casals, A., Amat, J., Santana, F., Torrens, C., (2010). Robotics as a support tool for experimental optimisation of surgical strategies in orthopaedic surgery Applied Bionics and Biomechanics , 7, (3), 231-239

Robotics has shown its potential not only in assisting the surgeon during an intervention but also as a tool for training and for surgical procedure's evaluation. Thus, robotics can constitute an extension of simulators that are based on the high capabilities of computer graphics. In addition, haptics has taken a first step in increasing the performance of current virtual reality systems based uniquely on computer simulation and their corresponding interface devices. As a further step in the field of training and learning in surgery, this work describes a robotic experimental workstation composed of robots and specific measuring devices, together with their corresponding control and monitoring strategies for orthopaedic surgery. Through a case study, humerus arthroplasty, experimental evaluation shows the possibilities of having a test bed available for repetitive and quantifiable trials, which make a reliable scientific comparison between different surgical strategies possible.

JTD Keywords: Surgical robotics, Training robotics, Optimisation of surgical procedures, Surgical techniques evaluation

Banos, R. C., Vivero, A., Aznar, S., Garcia, J., Pons, M., Madrid, C., Juarez, A., (2009). Differential regulation of horizontally acquired and core genome genes by the bacterial modulator H-NS PLoS Genetics 5, (6), 8

Horizontal acquisition of DNA by bacteria dramatically increases genetic diversity and hence successful bacterial colonization of several niches, including the human host. A relevant issue is how this newly acquired DNA interacts and integrates in the regulatory networks of the bacterial cell. The global modulator H-NS targets both core genome and HGT genes and silences gene expression in response to external stimuli such as osmolarity and temperature. Here we provide evidence that H-NS discriminates and differentially modulates core and HGT DNA. As an example of this, plasmid R27-encoded H-NS protein has evolved to selectively silence HGT genes and does not interfere with core genome regulation. In turn, differential regulation of both gene lineages by resident chromosomal H-NS requires a helper protein: the Hha protein. Tight silencing of HGT DNA is accomplished by H-NS-Hha complexes. In contrast, core genes are modulated by H-NS homoligomers. Remarkably, the presence of Hha-like proteins is restricted to the Enterobacteriaceae. In addition, conjugative plasmids encoding H-NS variants have hitherto been isolated only from members of the family. Thus, the H-NS system in enteric bacteria presents unique evolutionary features. The capacity to selectively discriminate between core and HGT DNA may help to maintain horizontally transmitted DNA in silent form and may give these bacteria a competitive advantage in adapting to new environments, including host colonization.

JTD Keywords: 2A strain 2457T, Escherichia-Coli, Salmonella-Enterica, Protein, DNA, Expression, Binding, HHA, Shigella, Plasmid