by Keyword: supported lipid bilayers
Pawar, Nisha, Pena-Figueroa, Miriam, Verde-Sesto, Ester, Maestro, Armando, Alvarez-Fernandez, Alberto, (2024). Exploring the Interaction of Lipid Bilayers with Curcumin-Laponite Nanoparticles: Implications for Drug Delivery and Therapeutic Applications Small
Curcumin, the active compound in turmeric, is renowned for its anti-inflammatory, antioxidant, and antimicrobial properties, making it beneficial for treating conditions like arthritis, neurodegenerative diseases, and various cancers. Despite its promising therapeutic potential, curcumin's poor bioavailability-due to its rapid metabolism and low solubility-limits its clinical efficacy. To address this, recent research has focused on enhancing curcumin delivery using nanoparticles, liposomes, and novel nanomaterials. Among these, laponite, a synthetic nanoclay, has shown promise in improving curcumin delivery due to its unique properties, including large surface area, dual charge, and stability in solution. This study explores the use of curcumin-laponite nanoparticles as carrier vehicles for controlled delivery to in vitro model membranes. Utilizing advanced techniques such as neutron reflectometry, atomic force microscopy, quartz crystal microbalance with dissipation, and infrared spectroscopy, the interaction between curcumin-laponite nanoparticles and solid-supported lipid bilayers is monitored, revealing enhanced stability and controlled release of curcumin across the membrane. These findings pave the way for the development of curcumin-based therapies targeting cardiovascular, neurological, and oncological diseases, leveraging the synergistic effects of curcumin's biological activity and laponite's delivery capabilities.
JTD Keywords: Antioxidant, Apoptosis, Cell, Controlled-release, Curcumin, Drug delivery, Emulsion polymerization, Laponite, Longa, Neutron, Neutron reflectivity, Nf-kappa-b, Products, Supported lipid bilayer, Supported lipid bilayers
Woythe, L, Porciani, D, Harzing, T, van Veen, S, Burke, DH, Albertazzi, L, (2023). Valency and affinity control of aptamer-conjugated nanoparticles for selective cancer cell targeting Journal Of Controlled Release 355, 228-237
Nanoparticles (NPs) are commonly functionalized using targeting ligands to drive their selective uptake in cells of interest. Typical target cell types are cancer cells, which often overexpress distinct surface receptors that can be exploited for NP therapeutics. However, these targeted receptors are also moderately expressed in healthy cells, leading to unwanted off-tumor toxicities. Multivalent interactions between NP ligands and cell receptors have been investigated to increase the targeting selectivity towards cancer cells due to their non-linear response to receptor density. However, to exploit the multivalent effect, multiple variables have to be considered such as NP valency, ligand affinity, and cell receptor density. Here, we synthesize a panel of aptamer-functionalized silica-supported lipid bilayers (SSLB) to study the effect of valency, aptamer affinity, and epidermal growth factor receptor (EGFR) density on targeting specificity and selectivity. We show that there is an evident interplay among those parameters that can be tuned to increase SSLB selectivity towards high-density EGFR cells and reduce accumulation at non-tumor tissues. Specifically, the combination of high-affinity aptamers and low valency SSLBs leads to increased high-EGFR cell selectivity. These insights provide a better understanding of the multivalent interactions of NPs with cells and bring the nanomedicine field a step closer to the rational design of cancer nanotherapeutics.Copyright © 2023. Published by Elsevier B.V.
JTD Keywords: aptamer avidity and affinity, delivery, microscopy, multivalency, multivalent, nanoparticle targeting, silica -supported lipid bilayers, Aptamer avidity and affinity, Multivalency, Nanoparticle targeting, Silica-supported lipid bilayers, Supported lipid-bilayers, Tumor targeting
Bar, L, Perissinotto, F, Redondo-Morata, L, Giannotti, MI, Goole, J, Losada-Pérez, P, (2022). Interactions of hydrophilic quantum dots with defect-free and defect containing supported lipid membranes Colloids And Surfaces B-Biointerfaces 210, 112239
Quantum dots (QDs) are semiconductor nanoparticles with unique optical and electronic properties, whose interest as potential nano-theranostic platforms for imaging and sensing is increasing. The design and use of QDs requires the understanding of cell-nanoparticle interactions at a microscopic and nanoscale level. Model systems such as supported lipid bilayers (SLBs) are useful, less complex platforms mimicking physico-chemical properties of cell membranes. In this work, we investigated the effect of topographical homogeneity of SLBs bearing different surface charge in the adsorption of hydrophilic QDs. Using quartz-crystal microbalance, a label-free surface sensitive technique, we show significant differences in the interactions of QDs onto homogeneous and inhomogeneous SLBs formed following different strategies. Within short time scales, QDs adsorb onto topographically homogeneous, defect-free SLBs is driven by electrostatic interactions, leading to no layer disruption. After prolonged QD exposure, the nanomechanical stability of the SLB decreases suggesting nanoparticle insertion. In the case of inhomogeneous, defect containing layers, QDs target preferentially membrane defects, driven by a subtle interplay of electrostatic and entropic effects, inducing local vesicle rupture and QD insertion at membrane edges. © 2021
JTD Keywords: adsorption, atomic force microscopy, bilayer formation, gold nanoparticles, hydrophilic quantum dots, lipid membrane defects, model, nanomechanics, quartz crystal microbalance with dissipation, size, supported lipid bilayers, surfaces, Atomic force microscopy, Atomic-force-microscopy, Cytology, Defect-free, Electronic properties, Electrostatics, Hydrophilic quantum dot, Hydrophilic quantum dots, Hydrophilicity, Hydrophilics, Lipid bilayers, Lipid membrane defect, Lipid membrane defects, Lipid membranes, Lipids, Nanocrystals, Nanomechanics, Optical and electronic properties, Quartz, Quartz crystal microbalance with dissipation, Quartz crystal microbalances, Quartz-crystal microbalance, Semiconductor nanoparticles, Semiconductor quantum dots, Supported lipid bilayers
Gumí-Audenis, B., Giannotti, M. I., (2019). Structural and mechanical characterization of supported model membranes by AFM Biomimetic Lipid Membranes: Fundamentals, Applications, and Commercialization (ed. Kök, Fatma N., Arslan Yildiz, Ahu, Inci, Fatih), Springer International Publishing (Cham, Germany) , 1-27
Several cellular processes, including adhesion, signaling and transcription, endocytosis, and membrane resealing, among others, involve conformational changes such as bending, vesiculation, and tubulation. These mechanisms generally involve membrane separation from the cytoskeleton as well as strong bending, for which the membrane chemical composition and physicochemical properties, often highly localized and dynamic, are key players. The mechanical role of the lipid membrane in force triggered (or sensing) mechanisms in cells is important, and understanding the lipid bilayers’ physical and mechanical properties is essential to comprehend their contribution to the overall membrane. Atomic force microscopy (AFM)-based experimental approaches have been to date very valuable to deepen into these aspects. As a stand-alone, high-resolution imaging technique and force transducer with the possibility to operate in aqueous environment, it defies most other surface instrumentation in ease of use, sensitivity and versatility. In this chapter, we introduce the different AFM-based methods to assess topological and nanomechanical information on model membranes, specifically to supported lipid bilayers (SLBs), including several examples ranging from pure phospholipid homogeneous bilayers to multicomponent and phase-separated SLBs, increasing the bilayer complexity, in the direction of mimicking biological membranes.
JTD Keywords: Atomic force microscopy, Force spectroscopy, Model membranes, Nanomechanics, Supported lipid bilayers
Gumí-Audenis, Berta, Costa, Luca, Carlá, Francesco, Comin, Fabio, Sanz, Fausto, Giannotti, M. I., (2016). Structure and nanomechanics of model membranes by atomic force microscopy and spectroscopy: Insights into the role of cholesterol and sphingolipids Membranes , 6, (4), 58
Biological membranes mediate several biological processes that are directly associated with their physical properties but sometimes difficult to evaluate. Supported lipid bilayers (SLBs) are model systems widely used to characterize the structure of biological membranes. Cholesterol (Chol) plays an essential role in the modulation of membrane physical properties. It directly influences the order and mechanical stability of the lipid bilayers, and it is known to laterally segregate in rafts in the outer leaflet of the membrane together with sphingolipids (SLs). Atomic force microscope (AFM) is a powerful tool as it is capable to sense and apply forces with high accuracy, with distance and force resolution at the nanoscale, and in a controlled environment. AFM-based force spectroscopy (AFM-FS) has become a crucial technique to study the nanomechanical stability of SLBs by controlling the liquid media and the temperature variations. In this contribution, we review recent AFM and AFM-FS studies on the effect of Chol on the morphology and mechanical properties of model SLBs, including complex bilayers containing SLs. We also introduce a promising combination of AFM and X-ray (XR) techniques that allows for in situ characterization of dynamic processes, providing structural, morphological, and nanomechanical information
JTD Keywords: Atomic force microscopy, Force spectroscopy, Lipid membranes, Supported lipid bilayers, Nanomechanics, Cholesterol, Sphingolipids, Membrane structure, XR-AFM combination
Hoyo, J., Guaus, E., Oncins, G., Torrent-Burgués, J., Sanz, F., (2013). Incorporation of Ubiquinone in supported lipid bilayers on ITO Journal of Physical Chemistry B , 117, (25), 7498-7506
Ubiquinone (UQ) is one of the main electron and proton shuttle molecules in biological systems, and dipalmitoylphosphatidylcholine (DPPC) is one of the most used model lipids. Supported planar bilayers (SPBs) are extensively accepted as biological model membranes. In this study, SPBs have been deposited on ITO, which is a semiconductor with good electrical and optical features. Specifically, topographic atomic force microscopy (AFM) images and force curves have been performed on SPBs with several DPPC:UQ ratios to study the location and the interaction of UQ in the SPB. Additionally, cyclic voltammetry has been used to understand the electrochemical behavior of DPPC:UQ SPBs. Obtained results show that, in our case, UQ is placed in two main different positions in SPBs. First, between the DPPC hydrophobic chains, fact that originates a decrease in the breakthrough force of the bilayer, and the second between the two leaflets that form the SPBs. This second position occurs when increasing the UQ content, fact that eventually forms UQ aggregates at high concentrations. The formation of aggregates produces an expansion of the SPB average height and a bimodal distribution of the breakthrough force. The voltammetric response of UQ depends on its position on the bilayer.
JTD Keywords: Bimodal distribution, Biological models, Dipalmitoyl phosphatidylcholine, Electrochemical behaviors, Hydrophobic chains, Supported lipid bilayers, Supported planar bilayers, Voltammetric response
Redondo, L., Giannotti, M. I., Sanz, F., (2012). Stability of lipid bilayers as model membranes: Atomic force microscopy and spectroscopy approach Atomic force microscopy in liquid (ed. Baró, A. M., Reifenberger, R. G.), Wiley-VCH Verlag GmbH & Co.KGaA (Weinheim, Germany) Part I: General Atomic Force Microscopy, 259-284