DONATE

Publications

by Keyword: weaning

Pinto J, González H, Arizmendi C, Muñoz Y, Giraldo BF, (2023). Analysis of the Cardiorespiratory Pattern of Patients Undergoing Weaning Using Artificial Intelligence International Journal Of Environmental Research And Public Health 20, 4430

The optimal extubating moment is still a challenge in clinical practice. Respiratory pattern variability analysis in patients assisted through mechanical ventilation to identify this optimal moment could contribute to this process. This work proposes the analysis of this variability using several time series obtained from the respiratory flow and electrocardiogram signals, applying techniques based on artificial intelligence. 154 patients undergoing the extubating process were classified in three groups: successful group, patients who failed during weaning process, and patients who after extubating failed before 48 hours and need to reintubated. Power Spectral Density and time-frequency domain analysis were applied, computing Discrete Wavelet Transform. A new Q index was proposed to determine the most relevant parameters and the best decomposition level to discriminate between groups. Forward selection and bidirectional techniques were implemented to reduce dimensionality. Linear Discriminant Analysis and Neural Networks methods were implemented to classify these patients. The best results in terms of accuracy were, 84.61 ± 3.1% for successful versus failure groups, 86.90 ± 1.0% for successful versus reintubated groups, and 91.62 ± 4.9% comparing the failure and reintubated groups. Parameters related to Q index and Neural Networks classification presented the best performance in the classification of these patients.

JTD Keywords: Mechanical ventilation, Neural networks, Wavelet transform, Weaning


Arboleda, A, Amado, L, Rodriguez, J, Naranjo, F, Giraldo, BF, (2021). A new protocol to compare successful versus failed patients using the electromyographic diaphragm signal in extubation process Conference Proceedings : ... Annual International Conference Of The Ieee Engineering In Medicine And Biology Society. Ieee Engineering In Medicine And Biology Society. Conference , 5646-5649

In clinical practice, when a patient is undergoing mechanical ventilation, it is important to identify the optimal moment for extubation, minimizing the risk of failure. However, this prediction remains a challenge in the clinical process. In this work, we propose a new protocol to study the extubation process, including the electromyographic diaphragm signal (diaEMG) recorded through 5-channels with surface electrodes around the diaphragm muscle. First channel corresponds to the electrode on the right. A total of 40 patients in process of withdrawal of mechanical ventilation, undergoing spontaneous breathing tests (SBT), were studied. According to the outcome of the SBT, the patients were classified into two groups: successful (SG: 19 patients) and failure (FG: 21 patients) groups. Parameters extracted from the envelope of each channel of diaEMG in time and frequency domain were studied. After analyzing all channels, the second presented maximum differences when comparing the two groups of patients, with parameters related to root mean square (p = 0.005), moving average (p = 0.001), and upward slope (p = 0.017). The third channel also presented maximum differences in parameters as the time between maximum peak (p = 0.004), and the skewness (p = 0.027). These results suggest that diaphragm EMG signal could contribute to increase the knowledge of the behaviour of respiratory system in these patients and improve the extubation process.Clinical Relevance - This establishes the characterization of success and failure patients in the extubation process. © 2021 IEEE.

JTD Keywords: classification, recognition, Airway extubation, Artificial ventilation, Clinical practices, Clinical process, Diaphragm, Diaphragm muscle, Diaphragms, Electrodes, Electromyographic, Extubation, Frequency domain analysis, Human, Humans, Maximum differences, Mechanical ventilation, New protocol, Respiration, artificial, Respiratory system, Risk of failure, Spontaneous breathing, Surface electrode, Surface emg signals, Thorax, Ventilation, Ventilator weaning


Correa, L.S., Giraldo, B., Correa, R., Arini, P.D., Laciar, E., (2014). Estudio de la pausa espiratoria en pacientes con enfermedades obstructivas en proceso de desconexión de la ventilación mecánica IFMBE Proceedings VI Latin American Congress on Biomedical Engineering (CLAIB 2014) , Springer (Paraná, Argentina) 49, 705-708

In this work, the flow signal Expiratory Pause (EP) temporal analysis is used in 18 patients with obstructive lung diseases going through spontaneous breathing trial at weaning process. The main objective was to identify the patients who were successfully disconnected (success group: 9 patients), and those who were not (failure and reintubated group: 9 patients). A variable selection stage was done by mean group comparison and step wise variable inclusion, leading to a 3 parameters set: EP time median; cycle time mean; and median absolute deviation of the EP maxima local number. Next, this set was used in a classifier based on linear discriminant analysis, which results in 17 patients (94.4%) correctly classified, with 88.9% of specificity (Sp) and 100% of sensitivity (Se). Finally, applying the leave-one-out cross validation method, results were 88.9% of correctly classified patients (Sp=77.8% and Se=100%). In conclusion, the proposed parameters showed a good performance and could be used to help therapists to wean patients with obstructive diseases.

JTD Keywords: Chronic Obstructive Pulmonary Disease (COPD), Weaning, Mechanical ventilation, Expiratory pause


Garde, Ainara, Voss, Andreas, Caminal, Pere, Benito, Salvador, Giraldo, Beatriz F., (2013). SVM-based feature selection to optimize sensitivity-specificity balance applied to weaning Computers in Biology and Medicine , 43, (5), 533-540

Classification algorithms with unbalanced datasets tend to produce high predictive accuracy over the majority class, but poor predictive accuracy over the minority class. This problem is very common in biomedical data mining. This paper introduces a Support Vector Machine (SVM)-based optimized feature selection method, to select the most relevant features and maintain an accurate and well-balanced sensitivity–specificity result between unbalanced groups. A new metric called the balance index (B) is defined to implement this optimization. The balance index measures the difference between the misclassified data within each class. The proposed optimized feature selection is applied to the classification of patients' weaning trials from mechanical ventilation: patients with successful trials who were able to maintain spontaneous breathing after 48 h and patients who failed to maintain spontaneous breathing and were reconnected to mechanical ventilation after 30 min. Patients are characterized through cardiac and respiratory signals, applying joint symbolic dynamic (JSD) analysis to cardiac interbeat and breath durations. First, the most suitable parameters (C+,C−,σ) are selected to define the appropriate SVM. Then, the feature selection process is carried out with this SVM, to maintain B lower than 40%. The best result is obtained using 6 features with an accuracy of 80%, a B of 18.64%, a sensitivity of 74.36% and a specificity of 82.42%.

JTD Keywords: Support vector machines, Balance index, Sensitivity-specificity balance, Cardiorespiratory interaction, Joint symbolic dynamics, Feature selection, Weaning procedure


Giraldo, B. F., Chaparro, J. A., Caminal, P., Benito, S., (2013). Characterization of the respiratory pattern variability of patients with different pressure support levels Engineering in Medicine and Biology Society (EMBC) 35th Annual International Conference of the IEEE , IEEE (Osaka, Japan) , 3849-3852

One of the most challenging problems in intensive care is still the process of discontinuing mechanical ventilation, called weaning process. Both an unnecessary delay in the discontinuation process and a weaning trial that is undertaken too early are undesirable. In this study, we analyzed respiratory pattern variability using the respiratory volume signal of patients submitted to two different levels of pressure support ventilation (PSV), prior to withdrawal of the mechanical ventilation. In order to characterize the respiratory pattern, we analyzed the following time series: inspiratory time, expiratory time, breath duration, tidal volume, fractional inspiratory time, mean inspiratory flow and rapid shallow breathing. Several autoregressive modeling techniques were considered: autoregressive models (AR), autoregressive moving average models (ARMA), and autoregressive models with exogenous input (ARX). The following classification methods were used: logistic regression (LR), linear discriminant analysis (LDA) and support vector machines (SVM). 20 patients on weaning trials from mechanical ventilation were analyzed. The patients, submitted to two different levels of PSV, were classified as low PSV and high PSV. The variability of the respiratory patterns of these patients were analyzed. The most relevant parameters were extracted using the classifiers methods. The best results were obtained with the interquartile range and the final prediction errors of AR, ARMA and ARX models. An accuracy of 95% (93% sensitivity and 90% specificity) was obtained when the interquartile range of the expiratory time and the breath duration time series were used a LDA model. All classifiers showed a good compromise between sensitivity and specificity.

JTD Keywords: autoregressive moving average processes, feature extraction, medical signal processing, patient care, pneumodynamics, signal classification, support vector machines, time series, ARX, autoregressive modeling techniques, autoregressive models with exogenous input, autoregressive moving average model, breath duration time series, classification method, classifier method, discontinuing mechanical ventilation, expiratory time, feature extraction, final prediction errors, fractional inspiratory time, intensive care, interquartile range, linear discriminant analysis, logistic regression analysis, mean inspiratory flow, patient respiratory volume signal, pressure support level, pressure support ventilation, rapid shallow breathing, respiratory pattern variability characterization, support vector machines, tidal volume, weaning trial, Analytical models, Autoregressive processes, Biological system modeling, Estimation, Support vector machines, Time series analysis, Ventilation


Gonzalez, H., Acevedo, H., Arizmendi, C., Giraldo, B. F., (2013). Methodology for determine the moment of disconnection of patients of the mechanical ventilation using discrete wavelet transform Complex Medical Engineering (CME) 2013 ICME International Conference , IEEE (Beijing, China) , 483-486

The process of weaning from mechanical ventilation is one of the challenges in intensive care units. 66 patients under extubation process (T-tube test) were studied: 33 patients with successful trials and 33 patients who failed to maintain spontaneous breathing and were reconnected. Each patient was characterized using 7 time series from respiratory signals, and for each serie was evaluated the discrete wavelet transform. It trains a neural network for discriminating between patients from the two groups.

JTD Keywords: discrete wavelet transforms, neural nets, patient treatment, pneumodynamics, time series, ventilation, T-tube test, discrete wavelet transform, extubation process, intensive care units, mechanical ventilation, moment of disconnection, neural network, patients, respiratory signals, spontaneous breathing, time series, weaning, Mechanical Ventilation, Neural Networks, Time series from respiratory signals, Wavelet Transform


Giraldo, B.F., Gaspar, B.W., Caminal, P., Benito, S., (2012). Analysis of roots in ARMA model for the classification of patients on weaning trials Engineering in Medicine and Biology Society (EMBC) 34th Annual International Conference of the IEEE , IEEE (San Diego, USA) , 698-701

One objective of mechanical ventilation is the recovery of spontaneous breathing as soon as possible. Remove the mechanical ventilation is sometimes more difficult that maintain it. This paper proposes the study of respiratory flow signal of patients on weaning trials process by autoregressive moving average model (ARMA), through the location of poles and zeros of the model. A total of 151 patients under extubation process (T-tube test) were analyzed: 91 patients with successful weaning (GS), 39 patients that failed to maintain spontaneous breathing and were reconnected (GF), and 21 patients extubated after the test but before 48 hours were reintubated (GR). The optimal model was obtained with order 8, and statistical significant differences were obtained considering the values of angles of the first four poles and the first zero. The best classification was obtained between GF and GR, with an accuracy of 75.3% on the mean value of the angle of the first pole.

JTD Keywords: Analytical models, Biological system modeling, Computational modeling, Estimation, Hospitals, Poles and zeros, Ventilation, Autoregressive moving average processes, Patient care, Patient monitoring, Pneumodynamics, Poles and zeros, Ventilation, ARMA model, T-tube test, Autoregressive moving average model, Extubation process, Mechanical ventilation, Optimal model, Patient classification, Respiratory flow signal, Roots, Spontaneous breathing, Weaning trials


Chaparro, J.A., Giraldo, B.F., Caminal, P., Benito, S., (2012). Performance of respiratory pattern parameters in classifiers for predict weaning process Engineering in Medicine and Biology Society (EMBC) 34th Annual International Conference of the IEEE , IEEE (San Diego, USA) , 4349-4352

Weaning trials process of patients in intensive care units is a complex clinical procedure. 153 patients under extubation process (T-tube test) were studied: 94 patients with successful trials (group S), 38 patients who failed to maintain spontaneous breathing and were reconnected (group F), and 21 patients with successful test but that had to be reintubated before 48 hours (group R). The respiratory pattern of each patient was characterized through the following time series: inspiratory time (TI), expiratory time (TE), breathing cycle duration (TTot), tidal volume (VT), inspiratory fraction (TI/TTot), half inspired flow (VT/TI), and rapid shallow index (f/VT), where f is respiratory rate. Using techniques as autoregressive models (AR), autoregressive moving average models (ARMA) and autoregressive models with exogenous input (ARX), the most relevant parameters of the respiratory pattern were obtained. We proposed the evaluation of these parameters using classifiers as logistic regression (LR), linear discriminant analysis (LDA), support vector machines (SVM) and classification and regression tree (CART) to discriminate between patients from groups S, F and R. An accuracy of 93% (98% sensitivity and 82% specificity) has been obtained using CART classification.

JTD Keywords: Accuracy, Indexes, Logistics, Regression tree analysis, Support vector machines, Time series analysis, Autoregressive moving average processes, Medical signal processing, Pattern classification, Pneumodynamics, Regression analysis, Sensitivity, Signal classification, Support vector machines, Time series, SVM, T-tube testing, Autoregressive models-with-exogenous input, Autoregressive moving average models, Breathing cycle duration, Classification-and-regression tree, Expiratory time, Extubation process, Half inspired flow, Inspiratory fraction, Inspiratory time, Intensive care units, Linear discriminant analysis, Logistic regression, Rapid shallow index, Respiratory pattern parameter performance, Sensitivity, Spontaneous breathing, Support vector machines, Tidal volume, Time 48 hr, Time series, Weaning process classifiers


Caminal, P., Giraldo, B. F., Vallverdu, M., Benito, S., Schroeder, R., Voss, A., (2010). Symbolic dynamic analysis of relations between cardiac and breathing cycles in patients on weaning trials Annals of Biomedical Engineering , 38, (8), 2542-52

Traditional time-domain techniques of data analysis are often not sufficient to characterize the complex dynamics of the cardiorespiratory interdependencies during the weaning trials. In this paper, the interactions between the heart rate (HR) and the breathing rate (BR) were studied using joint symbolic dynamic analysis. A total of 133 patients on weaning trials from mechanical ventilation were analyzed: 94 patients with successful weaning (group S) and 39 patients that failed to maintain spontaneous breathing (group F). The word distribution matrix enabled a coarse-grained quantitative assessment of short-term nonlinear analysis of the cardiorespiratory interactions. The histogram of the occurrence probability of the cardiorespiratory words presented a higher homogeneity in group F than in group S, measured with a higher number of forbidden words in group S as well as a higher number of words whose probability of occurrence is higher than a probability threshold in group S. The discriminant analysis revealed the best results when applying symbolic dynamic variables. Therefore, we hypothesize that joint symbolic dynamic analysis provides enhanced information about different interactions between HR and BR, when comparing patients with successful weaning and patients that failed to maintain spontaneous breathing in the weaning procedure.

JTD Keywords: Dynamical nonlinearities analysis, Cardiorespiratory interdependencies, Joint symbolic dynamic, Weaning procedure


Garde, A., Schroeder, R., Voss, A., Caminal, P., Benito, S., Giraldo, B., (2010). Patients on weaning trials classified with support vector machines Physiological Measurement , 31, (7), 979-993

The process of discontinuing mechanical ventilation is called weaning and is one of the most challenging problems in intensive care. An unnecessary delay in the discontinuation process and an early weaning trial are undesirable. This study aims to characterize the respiratory pattern through features that permit the identification of patients' conditions in weaning trials. Three groups of patients have been considered: 94 patients with successful weaning trials, who could maintain spontaneous breathing after 48 h ( GSucc ); 39 patients who failed the weaning trial ( GFail ) and 21 patients who had successful weaning trials, but required reintubation in less than 48 h ( GRein ). Patients are characterized by their cardiorespiratory interactions, which are described by joint symbolic dynamics (JSD) applied to the cardiac interbeat and breath durations. The most discriminating features in the classification of the different groups of patients ( GSucc , GFail and GRein ) are identified by support vector machines (SVMs). The SVM-based feature selection algorithm has an accuracy of 81% in classifying GSucc versus the rest of the patients, 83% in classifying GRein versus GSucc patients and 81% in classifying GRein versus the rest of the patients. Moreover, a good balance between sensitivity and specificity is achieved in all classifications.

JTD Keywords: Mechanical ventilation, Weaning, Support vector machines, Joint symbolic dynamics


Correa, L. S., Laciar, E., Mut, V., Giraldo, B. F., Torres, A., (2010). Multi-parameter analysis of ECG and Respiratory Flow signals to identify success of patients on weaning trials Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) -----, 6070-6073

Statistical analysis, power spectral density, and Lempel Ziv complexity, are used in a multi-parameter approach to analyze four temporal series obtained from the Electrocardiographic and Respiratory Flow signals of 126 patients on weaning trials. In which, 88 patients belong to successful group (SG), and 38 patients belong to failure group (FG), i.e. failed to maintain spontaneous breathing during trial. It was found that mean values of cardiac inter-beat and breath durations give higher values for SG than for FG; Kurtosis coefficient of the spectrum of the rapid shallow breathing index is higher for FG; also Lempel Ziv complexity mean values associated with the respiratory flow signal are bigger for FG. Patients were then classified with a pattern recognition neural network, obtaining 80% of correct classifications (81.6% for FG and 79.5% for SG).

JTD Keywords: Electrocardiography, Medical signal processing, Neural nets, Pattern recognition, Pneumodynamics, Signal classification, Statistical analysis, ECG, Kurtosis coefficient, Lempel Ziv complexity, Breath durations, Cardiac interbeat durations, Electrocardiography, Multiparameter analysis, Pattern recognition neural network, Power spectral density, Respiratory flow signals, Signal classification, Spontaneous breathing, Statistical analysis, Weaning trials


Arcentales, A., Giraldo, B. F., Caminal, P., Diaz, I., Benito, S., (2010). Spectral analysis of the RR series and the respiratory flow signal on patients in weaning process Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 2485-2488

A considerable number of patients in weaning process have problems to keep spontaneous breathing during the trial and after it. This study proposes to extract characteristic parameters of the RR series and respiratory flow signal according to the patients' condition in weaning test. Three groups of patients have been considered: 93 patients with successful trials (group S), 40 patients that failed to maintain spontaneous breathing (group F), and 21 patients who had successful weaning trials, but that had to be reintubated before 48 hours (group R). The characterization was performed using spectral analysis of the signals, through the power spectral density, cross power spectral density and Coherence method. The parameters were extracted on the three frequency bands (VLF, LF and HF), and the principal statistical differences between groups were obtained in bands of VLF and HF. The results show an accuracy of 76.9% in the classification of the groups S and F.

JTD Keywords: Biomedical measurement, Electrocardiography, Medical signal processing, Pneumodynamics, Spectral analysis, RR series, Coherence method, Cross power spectral density, Electrocardiography, Principal statistical differences, Respiratory flow signal, Spectral analysis, Spontaneous breathing, Weaning test


Orini, Michele, Giraldo, Beatriz F., Bailon, Raquel, Vallverdu, Montserrat, Mainardi, Luca, Benito, Salvador, Diaz, Ivan, Caminal, Pere, (2008). Time-frequency analysis of cardiac and respiratory parameters for the prediction of ventilator weaning IEEE Engineering in Medicine and Biology Society Conference Proceedings 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (ed. IEEE), IEEE (Vancouver, Canada) 1-8, 2793-2796

Mechanical ventilators are used to provide life support in patients with respiratory failure. Assessing autonomic control during the ventilator weaning provides information about physiopathological imbalances. Autonomic parameters can be derived and used to predict success in discontinuing from the mechanical support. Time-frequency analysis is used to derive cardiac and respiratory parameters, as well as their evolution in time, during ventilator weaning in 130 patients. Statistically significant differences have been observed in autonomic parameters between patients who are considered ready for spontaneous breathing and patients who are not. A classification based on respiratory frequency, heart rate and heart rate variability spectral components has been proposed and has been able to correctly classify more than 80% of the cases.

JTD Keywords: Automatic Data Processing, Databases, Factual, Electrocardiography, Humans, Models, Statistical, Respiration, Respiration, Artificial, Respiratory Insufficiency, Respiratory Mechanics, Respiratory Muscles, Signal Processing, Computer-Assisted, Time Factors, Ventilator Weaning, Ventilators, Mechanical, Work of Breathing