DONATE

Reaching new depths: a non-invasive solution for the activation of proteins in deep tissues

Researchers at IBEC and their collaborators at the Centre of Regenerative Medicine of Barcelona (CMR[B]) have developed a revolutionary new technique based on photoactivation (light activation), by which cells in deep tissue can activated and tracked in vivo without causing any damage.

Manipulating protein expression to monitor cell behavior is a powerful tool in the field of biology.

Looking to the ocean for malaria solutions

Microciona_forwebResearchers have found heparin-like molecules with reduced blood-thinning activity that can be used for therapeutic approaches against malaria – in sea cucumbers, red algae and marine sponges.

Until now, heparin – which has been shown to have antimalarial activity and specific binding affinity for red blood cells infected with the Plasmodium malaria parasite – has not been explored for anti-malarial drug solutions due to its powerful anticoagulating activity. While heparin is able to block the cell adhesion of infected red blood cells to various host receptors and disrupt the growth of the pathogen, its downfall is that the quantities needed for malaria treatment would result in too much blood-thinning and bleeding. There’s also the potential risk of infection, since polysaccharides such as heparin tend to be obtained from mammals.