Artificial systems imitate how cells move and communicate

A review published in the scientific journal Small elegantly summarises the most important cellular biomimicry research of the past few years on synthetic soft-architectures, with a view to inspiring future developments in the field.

Samuel Sánchez, Group Leader at the Institute for Bioengineering of Catalonia (IBEC) co-authored this piece, alongside world-renowned experts in bioengineering and cell synthesis.

Urea-powered nanomotors a promising therapy for bladder cancer

IBEC’s Smart Nano-Bio-Devices group have published a paper describing nanomotors that can attack 3D bladder cancer spheroids in vitro.

The nanomotors carry anti-FGFR3 on their outer surface, an antibody that not only enables cancerous cells to be specifically targeted, but also inhibits the fibroblast growth factor signaling pathway, suppressing tumor growth. Crucially, the fuel that gives the nanomotors the capability of autonomous motion is urea, which is present at high concentrations in the bladder – making these particular nanomotors a promising avenue for this particular cancer.