DONATE

Three IBEC projects receive ERC Proof of Concept funding to drive innovation in health, neuroscience, and biomedical technology 

Dr Benedetta Bolognesi, Dr Irene Marco-Rius and Dr Nicolò Accanto, who are all principal investigators at IBEC, have each been awarded a prestigious ERC Proof of Concept grant. These grants are awarded by the European Research Council to support the exploration of the commercial and societal potential of research projects conducted within European institutions. The three winning projects range from new platforms for discovering antiamyloid drugs, to advanced metabolic analysis technologies, to optical tools for studying the brains of animals moving naturally. 

From left to right: Irene Marco-Rius, Nicolò Accanto i Benedetta Bolognesi.

Benedetta BolognesiIrene Marco-Rius and Nicolò Accanto — the principal investigators of the Protein Phase Transitions in Health and DiseaseMolecular Imaging for Precision Medicine and Nonlinear Photonics for Neuroscience groups, respectively — have each been awarded an ERC Proof of Concept Grant. These prestigious grants are awarded by the European Research Council (ERC) to explore the commercial and social potential of research projects that have previously received ERC funding. Applicants use this funding to verify the practical feasibility of scientific concepts, explore business opportunities or prepare patent applications. 

AMALIA: A Scalable Platform to Accelerate the Discovery of Small Anti-Amyloid Molecules 

Led by Benedetta Bolognesi, the AMALIA project addresses one of today’s greatest biomedical challenges: developing effective treatments for diseases such as Alzheimer’s and Parkinson’s, which are driven by the formation of protein aggregates known as amyloids. Despite decades of research, the initial events that trigger this aggregation process are still extremely difficult to study, and there are currently no scalable assays capable of systematically evaluating amyloid nucleation. 

AMALIA proposes a dual, massively scalable screening platform combining two complementary assays. The first is aimed at identifying molecules that can stabilise the native structure of globular proteins, thereby preventing their aggregation. The second is designed to detect inhibitors of amyloid nucleation in both folded and intrinsically disordered proteins. 

As part of this proof of concept based on the Glam-MAP project, the team will miniaturise and automate these assays to optimise them and carry out multi-target pilot screening. This will demonstrate their ability to operate in parallel on different amyloid targets. AMALIA is conceived as a platform technology that goes beyond a single project or target: a tool that eliminates the need for purified proteins and enables parallel discovery campaigns on multiple amyloid targets. This approach offers unprecedented speed and scalability. The aim of AMALIA is to transform the search for anti-amyloid therapies and contribute to reducing the enormous health and economic impact of these diseases. 

“I’m thrilled that with AMALIA we are bringing the speed and scalability of platform technologies to amyloid drug discovery – building a pipeline designed not to deliver just one drug, but to enable multiple therapeutic programs in parallel.”, says Bolognesi. 

CAMP: a magnetic resonance platform for high-sensitivity metabolic analysis in rare diseases 

Led by Irene Marco-Rius, the CAMP project seeks to commercialise technology combining microfluidics and hyperpolarised magnetic resonance. This development is based on technology generated by the LIFETIME project, which focuses on paediatric liver cancer models. 

CAMP will enable the simultaneous analysis of up to 30 samples by integrating microfluidic chips with magnetic resonance technology, significantly increasing sensitivity. 

This combination reduces the number of cells required per sample by over 50%, which is highly relevant for rare diseases such as hepatoblastoma, where available material is limited. The team will validate the system in preclinical and clinical settings, and define a robust intellectual property and commercialisation strategy. 

The platform could provide deeper, more accurate and more reproducible metabolic analyses, facilitating significant advances towards personalised medicine. 

“Boosting throughput is key to taking hyperpolarised magnetic resonance beyond specialised labs; CAMP will make it possible,” explains Marco-Rius. 

NeuroBRIDGE: technology for studying the brain during natural behaviours 

Led by Nicolò Accanto, the NeuroBRIDGE project aims to transform two-photon microscopy — an essential neuroscientific technique for visualising and manipulating neuronal activity in vivo with cellular resolution. Currently, most two-photon microscopes cannot be used to study neural circuits during natural behavioural tasks. 

To overcome this barrier, Accanto and his team have developed a miniaturised, fibre-optic-based microscope that enables high-resolution studies to be conducted under free-moving conditions. With NeuroBRIDGE, IBEC’s Nonlinear Photonics for Neuroscience team is seeking to turn this innovation into a widely compatible, accessible product. 

Project objectives include designing modules compatible with a wide variety of commercial microscopes, validating their adaptability in different laboratories and infrastructures, and demonstrating their usefulness through experiments in natural behavioural paradigms. 

This technology will enable existing microscopes to be transformed into platforms for free-moving studies, greatly expanding the range of possible experiments and opening up new opportunities for understanding the brain and neurological disorders. 

“Advancing our understanding of the brain is not just about creating powerful technologies; it’s about making them accessible. NeuroBRIDGE seeks to remove barriers and unlock new possibilities for neuroscience laboratories worldwide,” states Accanto. 

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.' 
 
This work is supported by ERC (AMALIA, 101289202), (CAMP, 101291716), (NeuroBRIDGE, 101284650).