DONATE

Nanobioengineering


About

The Nanobioengineering group is a truly multidisciplinary team composed by researchers coming from very diverse backgrounds working together in applying nanotechnology for the development of new biomedical systems and devices, mainly for diagnostic purposes, and integrated microfluidic Organ-on-Chip devices for the study of organ physiology, disease etiology, or drug screening.

The goal is to fabricate microsystems containing living cells that recapitulate tissue and organ level functions in vitro and new portable diagnosis devices that can be used as Point-of-Care systems.

The main research activities of the group include the engineering and biochemical functionalization of biomaterials integrated with microfluidics systems. The bioengineered microdevices are used to study cell responses to biomolecular compounds applied to Organ-on-Chip devices, or for the development of new lab-on-a-chip based biosensors.

The projects carried out by the group are focused on clinical and industrial problems and are related to three convergent research lines:

1. Biosensors and Lab-on-a-Chip devices for clinical diagnosis and monitoring
  • DNA sensors-arrays integrated in lab-on-a-chip for portable point of care diagnosis
  • Vascular implantable sensors for circular cancer biomarker detection.
  • Antibody-based sensors for pathogenic microorganisms’ detection and neurodegenerative early detection
  • Implantable physiological sensors-array for tissue in vivo hypoxia and ischemia monitoring.
  • 3D printing microfluidic technology.
  • Microfluidic chip using hydrodynamic forces for cell counting and sorting. Application for detection of circulating tumours cells (CTCs).
2. Nanotechnology applied to biomolecule interaction studies and micro/nano-environments for regenerative medicine applications
  • Development of bioengineered 2D and 3D micro/nanoenvironments with a topography and chemical composition controlled at the nanoscale for cell behavior studies (adhesion, proliferation, differentiation). Application to musculoskeletal system regeneration.
  • Biophysical description of cellular phenomena (adhesion, cell migration, differentiation) using micro/nanotechnologies, cell biology tools and soft matter physics.
  • Study of biological mechanisms at single molecule level.
  • Study of magnetite nanoparticles – Amyloid-Beta interaction in Alzheimer disease.
3. Microfluidic systems for biological studies and Organ-on-Chip devices
  • Microfluidic chip for blood/plasma filtering and anemia diseases characterization
  • Spleen-on-a-chip development.
  • Nanoporous-based systems for kidney-on–a-chip developments.
  • Engineering microfluidic platforms for neurobiological studies.
  • Development of 3D neuromuscular tissue models for soft robotics and clinical applications
  • Microfluidic system to monitor cancer therapy response. Tumor Cancer on a chip in vitro development.
  • Microfluidic vessel on-a-chip for screening drug delivery systems.

Staff

Projects

NATIONAL PROJECTSFINANCERPI
BASE3D (2019-2022)RIS3CAT Tecnologies EmergentsJosep Samitier
PREMED Desarrollo de un ensayo microfluídico funcional en células para el tratamiento personalizado contra el cáncer (2019-2022)MICIU: Retos investigaciónJoan Montero
Sistema microfisiológico para mimetizar las barreras hemato-sistema nervioso central: aplicación a la esclerosis lateral amiotrófica (2019-2022)MICIU: Retos investigaciónAnna Lagunas
BATMAN Nanopartículas biomiméticas para el tratamiento dirigido del neuroblastoma pediátrico (2021-2023)MICIU, Retos investigación: Proyectos I+D. Aranzazu Villasante
Neuroblastoma en un chip para investigar la resistencia a fármacos y el uso de nanopartículas terapéuticas (2018-2022)Asociación Española contra el Cáncer (AECC)Aranzazu Villasante
Evaluación Funcional de respuesta celular a la quimioterapia neoadyuvante en Sarcoma de tejido blando (2021-2024)Fundación Mari Paz Jiménez Casado (FMPJC), Beca Trienal FMPJC Investigación SarcomasJoan Montero
INTERNATIONAL PROJECTSFINANCERPI
ASCTN-Training Training on Advanced Stem Cell Technologies in Neurology (2018-2022)European Comission Marie Curie ITNJosep Samitier
EVIDENCE Erythrocytes properties and viability in dependence of flow and extra-cellular environment (2020-2023)European Comission Marie Curie ITNJosep Samitier
PANDORA Pandemics Outbreaks Rationalized: towards a universal therapy to eliminate intracellular pathogens (2020-2025)European Commission, ERC – StG Josep Samitier
BEST Postdoctoral Programme in Bioengineering Excellence Scientific Training (2017-2022)European Commission, COFUND – Marie Sklodowska-Curie Co-funding of regional, national and international programmes Josep Samitier
SCIFI From Scientists to Innovators for Industry (2022-2024)EIT Health, EITHealth BP2022 Education Josep Samitier
PRIVATELY-FUNDED PROJECTSFINANCERPI
Descubrimiento de nuevos marcadores terapéuticos en neuroblastoma mediante la generación de modelos basados en técnicas de ingeniería de cáncer (2021-2023)Associació pacients NENJosep Samitier /Aranzazu Villasante
Understanding and measuring mechanical tumor properties to improve cancer diagnosis, treatment, and survival: Application to liquid biòpsies (2017-2022)Obra Social La CaixaJosep Samitier
BCNatal Artificial Placenta Project (2021-2022)Obra Social La CaixaMaria José López
Descubrimiento de nuevos marcadores terapéuticos en neuroblastoma mediante la generación de modelos basados en técnicas de ingeniería de cáncer (2021-2023)Associació pacients NENAranzazu Villasante
FINISHED PROJECTSFINANCERPI
Personalizing pediatric cancer treatment with kinome analyses, cell-based funcional assays and microfluidics (2017-2021)CELLEXJosep Samitier / Joan Montero
ISCHEMSURG Miniaturized electrochemical sensor for monitoring of free flap ischemia in post-surgery (2019-2021)AGAURJosep Samitier
Joint Programme – Healthy Ageing (2016)Obra Social “La Caixa”Josep Samitier
PLANTOID Innovative Robotic Artefacts Inspired by Plant Roots for Soil MonitoringICTJosep Samitier
Universal diagnostic platforms based on oligonucleotide cofidied nanoparticles and DNA microarray sensor devicesMINECO, I+D-Investigación fundamental no orientadaJosep Samitier
ELECTRA-G (2014-2016)Conveni GENOMICA S.A.U.Josep Samitier
Desarrollo de una nueva tecnología lab-on-a-chip para la detección y cuantificación de secuencias de ADN/ARN (2014-2016)Conveni GENOMICA S.A.U.Josep Samitier
BIOBOT Engineered biological soft robots based on neuro-muscular junction control (2015-2018)MINECO, Proyectos EXPLORA Ciencia / Tecnología 2015Josep Samitier
Advancecat Acceleradora pel desenvolupament de teràpies avançades
ACCIÓ / Smart Specialization funds (RIS3)Josep Samitier
MINDS Plataforma MIcrofluídica 3D de cultivo Neuronal compartimentada para el estuDio de enfermedades neurológicaS (2016-2018)MINECO, Proyectos I+D ExcelenciaJosep Samitier
nanoET-leukemia Nanoconductance of electron transfer proteins of the respiratory chain. Direct measurementat the single molecular level and therapeutic regulation in cancer stem cells (2015-2018)MINECO, Proyectos RETOS 2015 / CIBERAnna Lagunas / Marina Giannotti
Desenvolupar un sistema d’assistència robòtica per medicina i cirurgia fetal (2016-2019)CELLEXJosep Samitier
Monitoring neurocognitive deficits in Alzheimer’s and Parkinson’s diseases using saliva or blood-derived biomarkers and a multiplexed approach (2016-2018)Obra Social “La Caixa”Josep Samitier
ISCHEMSURG Miniaturized electrochemical sensor for monitoring of free flap ischemia in post-surgery (2019-2020)CaixaImpulseMonica Mir
Personalizing Melanoma Treatment Using Dynamic BH3 Profiling (2018-2020)Dana-Farber Cancer InstitutJoan Montero
NANOVAX Nanovacunas diseñadas para inmunoterapia antitumoral (2016-2020)EuroNanoMed (ERA-Net)Josep Samitier
Understanding and measuring mechanical tumor properties to improve cancer diagnosis, treatment, and survival: Application to liquid biopsies (2017-2020)Obra Social “La Caixa”Josep Samitier
Personalizing pediatric cancer treatment (2018-2020)Fundación FEROJoan Montero

Publications

Equipment

Nanofabrication and nanomanipulation

  • 3D Printing system for microfluidic devices
  • Graphtech

Characterization

  • Potentiostates
  • Optical Waveguide Lightmode Spectroscope (OWLS)
  • Atomic Force Microscope (AFM)
  • Optical Microscopes (white light/epifluorescence)
  • Electrical Impedance spectroscopy (EIS)
  • Multi-frequency Lock-in Amplifier
  • Sub-femtoamp Remote SourceMeter Instrument

Molecular/cell biology

  • Biological safety cabinet (class II)
  • Microwell plate readers
  • Protein and DNA electrophoresis systems
  • Microincubator Okolab
  • Nanodrop spectrophotometer
  • CO2 incubator for cells: Galaxy® 48 S, 48 L, 230 V/50/60 Hz, standard
  • Cell culture cabin: Bioii-Advance 3

Microfluidics

  • High precision syringe pumps
  • Peristaltic pumps

Collaborations

  • Prof. Fernando Albericio
    Institut de Recerca Biomédica (IRB), Barcelona, Spain
  • Dr. José Antonio Andrades
    Universidad de Málaga, Spain
  • Prof. Ezequiel Pérez
    Inestrosa Centro Andaluz de Nanomedicina y Biotecnología (BIONAND), Málaga, Spain
  • Prof. Joan Bausells
    Centro Nacional de Microelectrónica (CNM-CSIC), Barcelona
  • Prof. Albert van den Berg
    University of Twente, The Netherlands
  • Prof. Andre Bernard
    Institut für Mikro- und Nanotechnologie (MNT-NTB), Buchs, Switzerland
  • Prof. H. Börner
    Max Planck Institute of Colloids and Interfaces, Golm, Germany
  • Prof. Josep Maria Canals
    University of Barcelona, Spain
  • Dr. Matthew Dalby
    University of Glasgow, UK
  • Prof. Paolo Dario
    Scuola Superiore Sant’Anna (SSSA), Pontedera, Italy
  • Prof. Ramón Eritja
    Institut de Recerca Biomédica (IRB), Barcelona, Spain
  • Prof. E. Faszewski
    Wheelock College, Boston, USA
  • Prof. G. Fuhr
    FhG Biomedicine, St. Ingbert, Germany
  • Dr. Juan C. Izpisúa
    Salk Institute for Biological Studies, La Jolla, California
  • Dr. Nicole Jaffrezic
    Université Claude Bernard Lyon 1, France
  • Dr. Graham Johnson
    Uniscan Instruments Ltd, Buxton, UK
  • Dr. Mª Pilar Marco
    Institute of Chemical and Environmental Research, Barcelona
  • Prof. Jean-Louis Marty
    Université de Perpignan Via Domitia, France
  • Prof. Barbara Mazzolai
    IIT Center for Micro-BioRobotics (CMBR), Pontedera, Italy
  • Dr. Edith Pajot
    Biology of Olfaction and Biosensors group (BOB) at INRA, Jouy-en-Josas, France
  • Dr. M. Lluïssa Pérez
    Dept. Farmacología, University of Barcelona, Spain
  • Dr. Hernando del Portillo
    Centro de Investigación en Salud Internacional de Barcelona (CRESIB), Barcelona, Spain
  • Dr. Jaume Reventós
    Hospital Vall d’Hebrón, Barcelona, Spain
  • Prof. L. Reggiani
    Nanotechnology Laboratory, INFM, Lecce, Italy
  • Prof. Daniel Riveline
    Laboratory of Cell Physics ISIS/IGBMC, Strasbourg
  • Prof. M. Sampietro
    Politecnico di Milano, Italy
  • Prof. Molly M. Stevens
    Imperial College, London, UK
  • Dr. Christophe Vieu
    Laboratoire d’analyse et d’architectures des systèmes (LAAS-CNRS), Toulouse, France
  • Prof. Pau Gorostiza
    IBEC
  • Prof. Irene Díaz Moreno
    3IIQ-cicCartuja, Universidad de Sevilla-CSIC, Spain
  • Prof. Miguel A. de la Rosa
    3IIQ-cicCartuja, Universidad de Sevilla-CSIC, Spain
  • Dr. María del Mar Mañú Pereira
    Josep Carreras Leukaemia Research Institute, Barcelona, Spain
  • Dr. Joan Lluis Vives
    Josep Carreras Leukaemia Research Institute, Barcelona, Spain

Industry partners:

  • Biokit S.A. (Werfen group); Genomica S.A.U. (Zeltia group); Tallers Fiestas S.L.; Enantia S.L.; Microfluidic ChipShop GmbH; Minifab; Microliquid

News

A study led by the Institute for Bioengineering of Catalonia (IBEC) and the CIBER’s Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) describes a method that mimics the physiological response to smell.  The system makes it possible to discriminate between odours with very similar characteristics based on the binding interaction with the receptor, which causes a change in the capacitive response of the receptor. The application of this methodology opens the door to the development of highly selective olfactory biosensors.

Biosensors based on olfactory receptors to decipher the human sense of smell

A study led by the Institute for Bioengineering of Catalonia (IBEC) and the CIBER’s Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) describes a method that mimics the physiological response to smell.  The system makes it possible to discriminate between odours with very similar characteristics based on the binding interaction with the receptor, which causes a change in the capacitive response of the receptor. The application of this methodology opens the door to the development of highly selective olfactory biosensors.

The Institute for Bioengineering of Catalonia and the Sant Joan de Déu Barcelona Children’s Hospital have held a joint conference to strengthen collaboration in bioengineering and translational medicine. The event, held this morning at the IBEC, highlighted innovative projects, presented a joint PhD programme and encouraged the exchange of ideas between researchers from both institutions.

IBEC and SJD Barcelona Children’s Hospital strengthen their collaboration with a day of translational innovation

The Institute for Bioengineering of Catalonia and the Sant Joan de Déu Barcelona Children’s Hospital have held a joint conference to strengthen collaboration in bioengineering and translational medicine. The event, held this morning at the IBEC, highlighted innovative projects, presented a joint PhD programme and encouraged the exchange of ideas between researchers from both institutions.

The 1st Translational Collaboration Day between the Vall d’Hebron Institute of Research (VHIR) and the Institute of Bioengineering of Catalonia (IBEC), held on 21st November, was an opportunity to learn about the projects and research lines of both institutions and to promote interaction between professionals.

IBEC and VHIR hold a collaboration day to promote synergies

The 1st Translational Collaboration Day between the Vall d’Hebron Institute of Research (VHIR) and the Institute of Bioengineering of Catalonia (IBEC), held on 21st November, was an opportunity to learn about the projects and research lines of both institutions and to promote interaction between professionals.

The latest developments in nanotechnology, biotechnology and medicine were presented at the NanoBio&Med 2024 International Conference, held this week at the Barcelona Science Park (PCB) from 5 to 7 November. This is an annual event designed to establish new collaborations and promote innovative projects in the scientific-industrial sector.

Advances in nanobiotechnology and nanomedicine explored at the 12th International NanoBio&Med Conference

The latest developments in nanotechnology, biotechnology and medicine were presented at the NanoBio&Med 2024 International Conference, held this week at the Barcelona Science Park (PCB) from 5 to 7 November. This is an annual event designed to establish new collaborations and promote innovative projects in the scientific-industrial sector.

IBEC and the Blood and Tissue Bank of Catalonia (BST) held a day to explore new collaborations in bioengineering and translational medicine. The meeting, held yesterday at IBEC, highlighted innovative projects, presented a joint PhD programme and strengthened the link between biomedical research and clinical applications.

IBEC and BST strengthen ties with Translational Collaboration Day

IBEC and the Blood and Tissue Bank of Catalonia (BST) held a day to explore new collaborations in bioengineering and translational medicine. The meeting, held yesterday at IBEC, highlighted innovative projects, presented a joint PhD programme and strengthened the link between biomedical research and clinical applications.

IBEC’s 17th Annual Symposium focused on ‘Bioengineering for Emergent and Advanced Therapies’, one of IBEC’s key application areas. Around 300 people attended the event, including local and international researchers. It was a multidisciplinary environment in which experts from other centres and the IBEC community itself had the opportunity to present their projects and share knowledge.

Bioengineering for Emergent and Advanced Therapies at the 17th IBEC Symposium

IBEC’s 17th Annual Symposium focused on ‘Bioengineering for Emergent and Advanced Therapies’, one of IBEC’s key application areas. Around 300 people attended the event, including local and international researchers. It was a multidisciplinary environment in which experts from other centres and the IBEC community itself had the opportunity to present their projects and share knowledge.

The second IBEC-WCH Precision Medicine Conference took place last week in Chengdu, China. This is a partnership between the Institute for Bioengineering of Catalonia (IBEC) and the West China Hospital (WCH) of Sichuan University, which aims to strengthen scientific collaboration between the two countries.

IBEC and West China Hospital strengthen collaboration in precision medicine

The second IBEC-WCH Precision Medicine Conference took place last week in Chengdu, China. This is a partnership between the Institute for Bioengineering of Catalonia (IBEC) and the West China Hospital (WCH) of Sichuan University, which aims to strengthen scientific collaboration between the two countries.

1 2 3 8

Jobs

Application Deadline: 24/06/2022Ref: PD-JS The Nanobioengineering group led by Dr. Josep Samitier at the Institute for Bioengineering of Catalonia (IBEC) is looking for a Postdoctoral researcher to develop a research and development project on water quality monitoring. The contract will be within the framework of development and characterization of quality water sensors. Funded by “Fundació Bosch i Gimpera”

Postdoctoral researcher at the Nanobioengineering Research Group

Application Deadline: 24/06/2022Ref: PD-JS The Nanobioengineering group led by Dr. Josep Samitier at the Institute for Bioengineering of Catalonia (IBEC) is looking for a Postdoctoral researcher to develop a research and development project on water quality monitoring. The contract will be within the framework of development and characterization of quality water sensors. Funded by “Fundació Bosch i Gimpera”