DONATE

Publications

by Keyword: 2-photon

Garrido-Charles, Aida, Bosch, Miquel, Lee, Hyojung, Rovira, Xavier, Pittolo, Silvia, Llobet, Artur, Wong, Hovy Ho-Wai, Trapero, Ana, Matera, Carlo, Papotto, Claudio, Serra, Carme, Llebaria, Amadeu, Soriano, Eduardo, V Sanchez-Vives, Maria, Holt, Christine E, Gorostiza, Pau, (2025). Photoswitching endogenous glutamate receptors in neural ensembles and single synapses in vivo Brain Stimulation 18, 1779-1793

Purpose: To interrogate animal physiology in vivo, there is a lack of non-genetic methods to control the activity of endogenous proteins with pharmacological and spatiotemporal precision. To address this need, we recently developed targeted covalent photoswitchable (TCP) compounds that enable the remote control of endogenous glutamate receptors (GluRs) using light. Methods: We combine the photopharmacological effector TCP9 with neuronal activity sensors to demonstrate all-optical reversible control of endogenous GluRs across multiple spatiotemporal scales in rat brain tissue ex vivo and in Xenopus tadpole brains in vivo. Findings: TCP9 allows photoactivation of neuronal ensembles, individual neurons, and single synapses in ex vivo tissue and in intact brain in vivo, which is challenging using optogenetics and neurotransmitter uncaging. TCP9 covalently targets AMPA and kainate receptors, maintaining their functionality and photoswitchability for extended periods (>8 h) after a single compound application. This allows tracking endogenous receptor physiology during synaptic plasticity events such as the reduction of functional AMPA receptors during long-term depression in hippocampal neurons. Conclusion: TCP9 is a unique non-invasive tool for durable labeling, reversible photoswitching, and functional tracking of native receptors in brain tissue without genetic manipulation.

JTD Keywords: 2-photon, Ampa receptors, Ampar, Azobenzene, Caged glutamate, Calcium imaging, Covalent drug, Dendritic spines, Hippocampus, Kainate, Long-term depression, Optical control, Optopharmacology, Photopharmacology, Photoswitch, Plasticity, Proteins, Pulse-chase, Rat, Subunit, Surface expression, Synaptic ampa, Xenopus


Telliez, Cecile, Sims, Ruth, Faini, Giulia, Berto, Pascal, Papagiakoumou, Eirini, Tanese, Dimitrii, Accanto, Nicolo, (2025). Multiphoton Neurophotonics: Recent Advances in Imaging and Manipulating Neuronal Circuits Acs Photonics 12, 3296-3318

The possibility of using light to image and manipulate neuronal activity, at the heart of Neurophotonics, has provided new irreplaceable tools to study brain function. In particular, the combination of multiphoton microscopy and optogenetics allows researchers to interact with neuronal circuits with single-cell resolution in living brain tissues. However, significant optical challenges remain to empower new discoveries in Neuroscience. This Review focuses on three critical areas for future development: (1) expanding imaging and optogenetic stimulation to larger fields of view and faster acquisition speeds, while maintaining single-cell resolution and minimizing photodamage; (2) enabling access to deeper brain regions to study currently inaccessible neuronal circuits; and (3) developing optical techniques for studying natural behaviors in freely moving animals. For each of these challenges, we review the current state-of-the-art and suggest future directions with the potential to transform the field.

JTD Keywords: 2-photon excitation, Adaptive optics, All-optical brain studies, All-optical electrophysiology, Calcium and voltage imaging, Field-of-view, High-speed, In-vivo, Large-scale, Multiphoton microscopy, Neural activity, Neurophotonics, Optogeneticphotostimulation, Primary visual-cortex, Voltage indicator, Wavefrontshaping


Sortino, R, Cunquero, M, Castro-Olvera, G, Gelabert, R, Moreno, M, Riefolo, F, Matera, C, Fernàndez-Castillo, N, Agnetta, L, Decker, M, Lluch, JM, Hernando, J, Loza-Alvarez, P, Gorostiza, P, (2023). Three-Photon Infrared Stimulation of Endogenous Neuroreceptors in Vivo Angewandte Chemie (International Ed. Print) 62, e202311181

To interrogate neural circuits and crack their codes, in vivo brain activity imaging must be combined with spatiotemporally precise stimulation in three dimensions using genetic or pharmacological specificity. This challenge requires deep penetration and focusing as provided by infrared light and multiphoton excitation, and has promoted two-photon photopharmacology and optogenetics. However, three-photon brain stimulation in vivo remains to be demonstrated. We report the regulation of neuronal activity in zebrafish larvae by three-photon excitation of a photoswitchable muscarinic agonist at 50 pM, a billion-fold lower concentration than used for uncaging, and with mid-infrared light of 1560 nm, the longest reported photoswitch wavelength. Robust, physiologically relevant photoresponses allow modulating brain activity in wild-type animals with spatiotemporal and pharmacological precision. Computational calculations predict that azobenzene-based ligands have high three-photon absorption cross-section and can be used directly with pulsed infrared light. The expansion of three-photon pharmacology will deeply impact basic neurobiology and neuromodulation phototherapies.© 2023 Wiley-VCH GmbH.

JTD Keywords: absorption, azobenzene photoswitches, deep, glutamate-receptor, intravital microscopy, multiphoton excitation, muscarinic neuromodulation, photopharmacology, two-photon lithography and polymerization, 2-photon excitation, Animals, Azobenzene, Infrared rays, Ligands, Multiphoton excitation, Muscarinic neuromodulation, Photons, Photopharmacology, Photopharmacology, azobenzene, muscarinic neuromodulation, multiphoton excitation, two-photon lithography and polymerization, Two-photon lithography and polymerization, Zebrafish


Pittolo, Silvia, Lee, Hyojung, Lladó, Anna, Tosi, Sébastien, Bosch, Miquel, Bardia, Lídia, Gómez-Santacana, Xavier, Llebaria, Amadeu, Soriano, Eduardo, Colombelli, Julien, Poskanzer, Kira E., Perea, Gertrudis, Gorostiza, Pau, (2019). Reversible silencing of endogenous receptors in intact brain tissue using two-photon pharmacology Proceedings of the National Academy of Sciences of the United States of America 116, (27), 13680-13689

The physiological activity of proteins is often studied with loss-of-function genetic approaches, but the corresponding phenotypes develop slowly and can be confounding. Photopharmacology allows direct, fast, and reversible control of endogenous protein activity, with spatiotemporal resolution set by the illumination method. Here, we combine a photoswitchable allosteric modulator (alloswitch) and 2-photon excitation using pulsed near-infrared lasers to reversibly silence metabotropic glutamate 5 (mGlu5) receptor activity in intact brain tissue. Endogenous receptors can be photoactivated in neurons and astrocytes with pharmacological selectivity and with an axial resolution between 5 and 10 µm. Thus, 2-photon pharmacology using alloswitch allows investigating mGlu5-dependent processes in wild-type animals, including synaptic formation and plasticity, and signaling pathways from intracellular organelles.

JTD Keywords: Photopharmacology, Photoactivation, Pharmacological selectivity, Functional silencing, 2-photon pharmacology