DONATE

Publications

by Keyword: Alternative splicing

Pietroforte, S, Monasterio, MB, Ferrer-Vaquer, A, Irimia, M, Ibáñez, E, Popovic, M, Vassena, R, Zambelli, F, (2023). Specific processing of meiosis-related transcript is linked to final maturation in human oocytes Molecular Human Reproduction 29, gaad021

Human meiosis in oocytes entails an intricate regulation of the transcriptome to support late oocyte growth and early embryo development, both crucial to reproductive success. Currently, little is known about the co- and post-transcriptional mRNA processing mechanisms regulating the last meiotic phases, which contribute to transcriptome complexity and influence translation rates. We analyzed gene expression changes, splicing and pre-mRNA processing in an RNA sequencing set of 40 human oocytes at different meiotic maturation stages, matured both in vivo and in vitro. We found abundant untranslated region (UTR) processing, mostly at the 3' end, of meiosis-related genes between the germinal vesicle (GV) and metaphase II (MII) stages, supported by the differential expression of spliceosome and pre-mRNA processing related genes. Importantly, we found very few differences among GV oocytes across several durations of IVM, as long as they did not reach MII, suggesting an association of RNA processing and successful meiosis transit. Changes in protein isoforms are minor, although specific and consistent for genes involved in chromosome organization and spindle assembly. In conclusion, we reveal a dynamic transcript remodeling during human female meiosis, and show how pre-mRNA processing, specifically 3'UTR shortening, drives a selective translational regulation of transcripts necessary to reach final meiotic maturation.© The Author(s) 2023. Published by Oxford University Press on behalf of European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

JTD Keywords: 3 & prime, alternative splicing, gene expression, meiosis, oocyte competence, program, rna, splicing, untranslated region processing, untranslated regions, 3′ untranslated region processing, 3′ untranslated regions, Alternative splicing, Expression, Gene expression, Human oocytes, Meiosis, Oocyte competence, Splicing


Lidón, L, Llaó-Hierro, L, Nuvolone, M, Aguzzi, A, Avila, J, Ferrer, I, del Río, JA, Gavín, R, (2021). Tau exon 10 inclusion by prpc through downregulating gsk3? activity International Journal Of Molecular Sciences 22, 5370

Tau protein is largely responsible for tauopathies, including Alzheimer’s disease (AD), where it accumulates in the brain as insoluble aggregates. Tau mRNA is regulated by alternative splicing, and inclusion or exclusion of exon 10 gives rise to the 3R and 4R isoforms respectively, whose balance is physiologically regulated. In this sense, one of the several factors that regulate alternative splicing of tau is GSK3?, whose activity is inhibited by the cellular prion protein (PrPC), which has different physiological functions in neuroprotection and neuronal differentiation. Moreover, a relationship between PrPC and tau expression levels has been reported during AD evolution. For this reason, in this study we aimed to analyze the role of PrPC and the implication of GSK3? in the regulation of tau exon 10 alternative splicing. We used AD human samples and mouse models of PrPC ablation and tau overexpression. In addition, we used primary neuronal cultures to develop functional studies. Our results revealed a paralleled association between PrPC expression and tau 4R isoforms in all models analyzed. In this sense, reduction or ablation of PrPC levels induces an increase in tau 3R/4R balance. More relevantly, our data points to GSK3? activity downstream from PrPC in this phenomenon. Our results indicate that PrPC plays a role in tau exon 10 inclusion through the inhibitory capacity of GSK3?. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

JTD Keywords: alternative splicing, alzheimer's disease, alzheimers-disease, alzheimer’s disease, amyloid-beta, cellular prion protein, frontotemporal dementia, glycogen-synthase kinase-3, gsk3 beta, gsk3?, gsk3β, messenger-rna, microtubule-associated protein tau, neurofibrillary tangles, progressive supranuclear palsy, promotes neuronal differentiation, stem-cells, tauopathies, Alternative splicing, Alzheimer’s disease, Cellular prion protein, Gsk3?, Microtubule-associated protein tau, Tauopathies