DONATE

Publications

by Keyword: Blood-cells

Avalos-Padilla, Y, Fernandez-Busquets, X, (2024). Nanotherapeutics against malaria: A decade of advancements in experimental models Wiley Interdisciplinary Reviews-Nanomedicine And Nanobiotechnology 16, e1943

Malaria, caused by different species of protists of the genus Plasmodium, remains among the most common causes of death due to parasitic diseases worldwide, mainly for children aged under 5. One of the main obstacles to malaria eradication is the speed with which the pathogen evolves resistance to the drug schemes developed against it. For this reason, it remains urgent to find innovative therapeutic strategies offering sufficient specificity against the parasite to minimize resistance evolution and drug side effects. In this context, nanotechnology-based approaches are now being explored for their use as antimalarial drug delivery platforms due to the wide range of advantages and tuneable properties that they offer. However, major challenges remain to be addressed to provide a cost-efficient and targeted therapeutic strategy contributing to malaria eradication. The present work contains a systematic review of nanotechnology-based antimalarial drug delivery systems generated during the last 10 years. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease

JTD Keywords: Adjuvant system, Antimalarial activities, Antimalarial agent, Antimalarial drug, Antimalarial drugs, Antimalarials, Artemisinin resistance, Causes of death, Child, Controlled drug delivery, Diseases, Drug delivery system, Drug delivery systems, Drug interactions, Drug side-effects, Drug-delivery, Experimental modelling, Heparan-sulfate, Human, Humans, In-vitro, Malaria, Malaria vaccine, Mannosylated liposomes, Medical nanotechnology, Models, theoretical, Nanocarriers, Nanomedicine, Nanotechnology, Parasite-, Parasitics, Plasmodium, Plasmodium-falciparum malaria, Red-blood-cells, Targeted delivery, Targeted drug delivery, Theoretical model, Therapeutic strategy


Anselmo, MS, Lantero, E, Avalos-Padilla, Y, Bouzón-Arnáiz, I, Ramírez, M, Postigo, A, Serrano, JL, Sierra, T, Hernández-Ainsa, S, Fernández-Busquets, X, (2023). Heparin-Coated Dendronized Hyperbranched Polymers for Antimalarial Targeted Delivery Acs Applied Polymer Materials 5, 381-390

The rampant evolution of resistance in Plasmodium to all existing antimalarial drugs calls for the development of improved therapeutic compounds and of adequate targeted delivery strategies for them. Loading antimalarials in nanocarriers specifically targeted to the parasite will contribute to the administration of lower overall doses, with reduced side effects for the patient, and of higher local amounts to parasitized cells for an increased lethality toward the pathogen. Here, we report the development of dendronized hyperbranched polymers (DHPs), with capacity for antimalarial loading, that are coated with heparin for their specific targeting to red blood cells parasitized by Plasmodium falciparum. The resulting DHP-heparin complexes exhibit the intrinsic antimalarial activity of heparin, with an IC50 of ca. 400 nM, added to its specific targeting to P. falciparum-infected (vs noninfected) erythrocytes. DHP-heparin nanocarriers represent a potentially interesting contribution to the limited family of structures described so far for the loading and targeted delivery of current and future antimalarial compounds.© 2022 The Authors. Published by American Chemical Society.

JTD Keywords: carriers, drug-delivery, efficacy, heparin, malaria, mosquito, nanocarriers, parasite, plasmodium, targeted drug delivery, Dendritic polymers, Red-blood-cells


Biosca, A, Ramirez, M, Gomez-Gomez, A, Lafuente, A, Iglesias, V, Pozo, OJ, Imperial, S, Fernandez-Busquets, X, (2022). Characterization of Domiphen Bromide as a New Fast-Acting Antiplasmodial Agent Inhibiting the Apicoplastidic Methyl Erythritol Phosphate Pathway Pharmaceutics 14, 1320

The evolution of resistance by the malaria parasite to artemisinin, the key component of the combination therapy strategies that are at the core of current antimalarial treatments, calls for the urgent identification of new fast-acting antimalarials. The apicoplast organelle is a preferred target of antimalarial drugs because it contains biochemical processes absent from the human host. Fosmidomycin is the only drug in clinical trials targeting the apicoplast, where it inhibits the methyl erythritol phosphate (MEP) pathway. Here, we characterized the antiplasmodial activity of domiphen bromide (DB), another MEP pathway inhibitor with a rapid mode of action that arrests the in vitro growth of Plasmodium falciparum at the early trophozoite stage. Metabolomic analysis of the MEP pathway and Krebs cycle intermediates in 20 mu M DB-treated parasites suggested a rapid activation of glycolysis with a concomitant decrease in mitochondrial activity, consistent with a rapid killing of the pathogen. These results present DB as a model compound for the development of new, potentially interesting drugs for future antimalarial combination therapies.

JTD Keywords: antibiotics, antimalarial drugs, domiphen bromide, malaria, plasmodium falciparum, Antibiotics, Antimalarial drugs, Antimalarial-drug, Artemisinin, Combination therapies, Domiphen bromide, Intraerythrocytic stages, Isoprenoid biosynthesis, Malaria, Methyl erythritol phosphate pathway, Nonmevalonate pathway, Plasmodium falciparum, Plasmodium-falciparum apicoplast, Red-blood-cells, Targeted delivery


Kaurin, D, Bal, PK, Arroyo, M, (2022). Peeling dynamics of fluid membranes bridged by molecular bonds: moving or breaking Journal Of The Royal Society Interface 19, 20220183

Biological adhesion is a critical mechanical function of complex organisms. At the scale of cell-cell contacts, adhesion is remarkably tunable to enable both cohesion and malleability during development, homeostasis and disease. It is physically supported by transient and laterally mobile molecular bonds embedded in fluid membranes. Thus, unlike specific adhesion at solid-solid or solid-fluid interfaces, peeling at fluid-fluid interfaces can proceed by breaking bonds, by moving bonds or by a combination of both. How the additional degree of freedom provided by bond mobility changes the mechanics of peeling is not understood. To address this, we develop a theoretical model coupling diffusion, reactions and mechanics. Mobility and reaction rates determine distinct peeling regimes. In a diffusion-dominated Stefan-like regime, bond motion establishes self-stabilizing dynamics that increase the effective fracture energy. In a reaction-dominated regime, peeling proceeds by travelling fronts where marginal diffusion and unbinding control peeling speed. In a mixed reaction-diffusion regime, strengthening by bond motion competes with weakening by bond breaking in a force-dependent manner, defining the strength of the adhesion patch. In turn, patch strength depends on molecular properties such as bond stiffness, force sensitivity or crowding. We thus establish the physical rules enabling tunable cohesion in cellular tissues and in engineered biomimetic systems.

JTD Keywords: cell–cell adhesion, peeling, Adhesive contact, Cadherins, Cell-cell adhesion, Detachment, Detailed mechanics, Diffusion, Growth, Kinetics, Peeling, Red-blood-cells, Repulsion, Separation, Vesicle adhesion


Guasch-Girbau, A, Fernandez-Busquets, X, (2021). Review of the current landscape of the potential of nanotechnology for future malaria diagnosis, treatment, and vaccination strategies Pharmaceutics 13, 2189

Malaria eradication has for decades been on the global health agenda, but the causative agents of the disease, several species of the protist parasite Plasmodium, have evolved mechanisms to evade vaccine-induced immunity and to rapidly acquire resistance against all drugs entering clinical use. Because classical antimalarial approaches have consistently failed, new strategies must be explored. One of these is nanomedicine, the application of manipulation and fabrication technology in the range of molecular dimensions between 1 and 100 nm, to the development of new medical solutions. Here we review the current state of the art in malaria diagnosis, prevention, and therapy and how nanotechnology is already having an incipient impact in improving them. In the second half of this review, the next generation of antimalarial drugs currently in the clinical pipeline is presented, with a definition of these drugs’ target product profiles and an assessment of the potential role of nanotechnology in their development. Opinions extracted from interviews with experts in the fields of nanomedicine, clinical malaria, and the economic landscape of the disease are included to offer a wider scope of the current requirements to win the fight against malaria and of how nanoscience can contribute to achieve them. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

JTD Keywords: antibody-bearing liposomes, antimalarial drugs, combination therapies, drug-delivery strategies, malaria diagnosis, malaria prophylaxis, malaria therapy, nanocarriers, nanomedicine, nanoparticles, nanotechnology, plasmodium, plasmodium-falciparum, red-blood-cells, targeted delivery, targeted drug delivery, vitro antimalarial activity, Antimalarial drugs, Isothermal amplification lamp, Malaria diagnosis, Malaria prophylaxis, Malaria therapy, Nanocarriers, Nanomedicine, Nanotechnology, Plasmodium, Targeted drug delivery


Ivon Rodriguez-Villarreal, Angeles, Tarn, Mark D., Madden, Leigh A., Lutz, Julia B., Greenman, John, Samitier, Josep, Pamme, Nicole, (2011). Flow focussing of particles and cells based on their intrinsic properties using a simple diamagnetic repulsion setup Lab on a Chip 11, (7), 1240-1248

The continuous flow focussing and manipulation of particles and cells are important factors in microfluidic applications for performing accurate and reproducible procedures downstream. Many particle focussing methods require complex setups or channel designs that can limit the process and its applications. Here, we present diamagnetic repulsion as a simple means of focussing objects in continuous flow, based only on their intrinsic properties without the requirement of any label. Diamagnetic polystyrene particles were suspended in a paramagnetic medium and pumped through a capillary between a pair of permanent magnets, whereupon the particles were repelled by each magnet into the central axis of the capillary, thus achieving focussing. By investigating this effect, we found that the focussing was greatly enhanced with (i) increased magnetic susceptibility of the medium, (ii) reduced flow rate of the suspension, (iii) increased particle size, and (iv) increased residence time in the magnetic field. Furthermore, we applied diamagnetic repulsion to the flow focussing of living, label-free HaCaT cells.

JTD Keywords: Feeble magnetic substances, On-chip, Blood-cells, Microfluidic device, Separation, Field, Levitation, Magnetophoresis, Fractionation, Nanoparticles