by Keyword: Kinetics
Chen S, Peetroons X, Bakenecker AC, Lezcano F, Aranson IS, Sánchez S, (2024). Collective buoyancy-driven dynamics in swarming enzymatic nanomotors. Nature Communications 15, 9315
Enzymatic nanomotors harvest kinetic energy through the catalysis of chemical fuels. When a drop containing nanomotors is placed in a fuel-rich environment, they assemble into ordered groups and exhibit intriguing collective behaviour akin to the bioconvection of aerobic microorganismal suspensions. This collective behaviour presents numerous advantages compared to individual nanomotors, including expanded coverage and prolonged propulsion duration. However, the physical mechanisms underlying the collective motion have yet to be fully elucidated. Our study investigates the formation of enzymatic swarms using experimental analysis and computational modelling. We show that the directional movement of enzymatic nanomotor swarms is due to their solutal buoyancy. We investigate various factors that impact the movement of nanomotor swarms, such as particle concentration, fuel concentration, fuel viscosity, and vertical confinement. We examine the effects of these factors on swarm self-organization to gain a deeper understanding. In addition, the urease catalysis reaction produces ammonia and carbon dioxide, accelerating the directional movement of active swarms in urea compared with passive ones in the same conditions. The numerical analysis agrees with the experimental findings. Our findings are crucial for the potential biomedical applications of enzymatic nanomotor swarms, ranging from enhanced diffusion in bio-fluids and targeted delivery to cancer therapy.
JTD Keywords: Ammonia, Carbon dioxide, Catalysis, Computer simulation, Kinetics, Motion, Nanostructures, Urease, Viscosity
Parra, Albert, Denkova, Denitza, Burgos-Artizzu, Xavier P, Aroca, Ester, Casals, Marc, Godeau, Amelie, Ares, Miguel, Ferrer-Vaquer, Anna, Massafret, Ot, Oliver-Vila, Irene, Mestres, Enric, Acacio, Monica, Costa-Borges, Nuno, Rebollo, Elena, Chiang, Hsiao Ju, Fraser, Scott E, Cutrale, Francesco, Seriola, Anna, Ojosnegros, Samuel, (2024). METAPHOR: Metabolic evaluation through phasor-based hyperspectral imaging and organelle recognition for mouse blastocysts and oocytes Proceedings Of The National Academy Of Sciences Of The United States Of America 121, e2315043121
Only 30% of embryos from in vitro fertilized oocytes successfully implant and develop to term, leading to repeated transfer cycles. To reduce time-to-pregnancy and stress for patients, there is a need for a diagnostic tool to better select embryos and oocytes based on their physiology. The current standard employs brightfield imaging, which provides limited physiological information. Here, we introduce METAPHOR: Metabolic Evaluation through Phasor-based Hyperspectral Imaging and Organelle Recognition. This non-invasive, label-free imaging method combines two-photon illumination and AI to deliver the metabolic profile of embryos and oocytes based on intrinsic autofluorescence signals. We used it to classify i) mouse blastocysts cultured under standard conditions or with depletion of selected metabolites (glucose, pyruvate, lactate); and ii) oocytes from young and old mouse females, or in vitro-aged oocytes. The imaging process was safe for blastocysts and oocytes. The METAPHOR classification of control vs. metabolites-depleted embryos reached an area under the ROC curve (AUC) of 93.7%, compared to 51% achieved for human grading using brightfield imaging. The binary classification of young vs. old/in vitro-aged oocytes and their blastulation prediction using METAPHOR reached an AUC of 96.2% and 82.2%, respectively. Finally, organelle recognition and segmentation based on the flavin adenine dinucleotide signal revealed that quantification of mitochondria size and distribution can be used as a biomarker to classify oocytes and embryos. The performance and safety of the method highlight the accuracy of noninvasive metabolic imaging as a complementary approach to evaluate oocytes and embryos based on their physiology.
JTD Keywords: Ai, Consumption, Culture, Embryo development, Fluorescence, Hyperspectral imagin, Implantation, In vitro fertilization, Infertility, Label-free imaging, Microscopy, Morphokinetics, Oxygen concentrations, Selectio, Time-lapse
Fulgheri, F, Manca, ML, Fernàndez-Busquets, X, Manconi, M, (2023). Analysis of complementarities between nanomedicine and phytodrugs for the treatment of malarial infection Nanomedicine 18, 1681-1696
The use of nanocarriers in medicine, so-called nanomedicine, is one of the most innovative strategies for targeting drugs at the action site and increasing their activity index and effectiveness. Phytomedicine is the oldest traditional method used to treat human diseases and solve health problems. The recent literature on the treatment of malaria infections using nanodelivery systems and phytodrugs or supplements has been analyzed. For the first time, in the present review, a careful look at the considerable potential of nanomedicine in promoting phytotherapeutic efficacy was done, and its key role in addressing a translation through a significant reduction of the current burden of malaria in many parts of the world has been underlined.
JTD Keywords: antiplasmodial activity, bioavailability, chloroquine, combination therapy, discovery, drug-delivery, drug-delivery systems, nanocapsules, nanomedicine, natural molecules, pharmacokinetics, phytomedicine, plasmodium-falciparum, Artemisinin-based combination therapy, Drug-delivery systems, Nanomedicine, Natural molecules, Phytomedicine, Solid lipid nanoparticles
Valenti, S, Arioli, M, Jamett, A, Tamarit, JL, Puiggalí, J, Macovez, R, (2023). Amorphous solid dispersions of curcumin in a poly(ester amide): Antiplasticizing effect on the glass transition and macromolecular relaxation dynamics, and controlled release International Journal Of Pharmaceutics 644, 123333
In order to exploit the pharmacological potential of natural bioactive molecules with low water solubility, such as curcumin, it is necessary to develop formulations, such as amorphous polymer dispersions, which allow a constant release rate and at the same time avoid possible toxicity effects of the crystalline form of the molecule under scrutiny. In this study, polymer dispersions of curcumin were obtained in PADAS, a biodegradable semicrystalline copolymer based on 1,12-dodecanediol, sebacic acid and alanine. The dispersions were fully characterized by means of differential scanning calorimetry and broadband dielectric spectroscopy, and the drug release profile was measured in a simulated body fluid. Amorphous homogeneous binary dispersions were obtained for curcumin mass fraction between 30 and 50%. Curcumin has significantly higher glass transition temperature Tg (≈ 347 K) than the polymer matrix (≈274-277 K depending on the molecular weight), and dispersions displayed Tg's intermediate between those of the pure amorphous components, implying that curcumin acts as an effective antiplasticizer for PADAS. Dielectric spectroscopy was employed to assess the relaxation dynamics of the binary dispersion with 30 wt% curcumin, as well as that of each (amorphous) component separately. The binary dispersion was characterized by a single structural relaxation, a single Johari-Goldstein process, and two local intramolecular processes, one for each component. Interestingly, the latter processes scaled with the Tg of the sample, indicating that they are viscosity-sensitive. In addition, both the pristine polymer and the dispersion exhibited an interfacial Maxwell-Wagner relaxation, likely due to spatial heterogeneities associated with phase disproportionation in this polymer. The release of curcumin from the dispersion in a simulated body fluid followed a Fickian diffusion profile, and 51% of the initial curcumin content was released in 48 h.Copyright © 2023. Published by Elsevier B.V.
JTD Keywords: antioxidant, bioavailability, dielectric spectroscopy, domain havriliak-negami, glass transition temperature, kinetic stability, molecular mobility, nm pores, phase-behavior, physical stability, release kinetics, temperature, thermodynamic quantities, time, Amorphous formulations, Dielectric spectroscopy, Glass transition temperature, Kinetic stability, Kohlrausch-williams-watts, Molecular mobility, Release kinetics
Nong, J, Glassman, PM, Myerson, JW, Zuluaga-Ramirez, V, Rodriguez-Garcia, A, Mukalel, A, Omo-Lamai, S, Walsh, LR, Zamora, ME, Gong, XJ, Wang, ZC, Bhamidipati, K, Kiseleva, RY, Villa, CH, Greineder, CF, Kasner, SE, Weissman, D, Mitchell, MJ, Muro, S, Persidsky, Y, Brenner, JS, Muzykantov, VR, Marcos-Contreras, OA, (2023). Targeted Nanocarriers Co-Opting Pulmonary Intravascular Leukocytes for Drug Delivery to the Injured Brain Acs Nano 17, 13121-13136
Ex vivo-loaded white blood cells (WBC) can transfer cargo to pathological foci in the central nervous system (CNS). Here we tested affinity ligand driven in vivo loading of WBC in order to bypass the need for ex vivo WBC manipulation. We used a mouse model of acute brain inflammation caused by local injection of tumor necrosis factor alpha (TNF-α). We intravenously injected nanoparticles targeted to intercellular adhesion molecule 1 (anti-ICAM/NP). We found that (A) at 2 h, >20% of anti-ICAM/NP were localized to the lungs; (B) of the anti-ICAM/NP in the lungs >90% were associated with leukocytes; (C) at 6 and 22 h, anti-ICAM/NP pulmonary uptake decreased; (D) anti-ICAM/NP uptake in brain increased up to 5-fold in this time interval, concomitantly with migration of WBCs into the injured brain. Intravital microscopy confirmed transport of anti-ICAM/NP beyond the blood-brain barrier and flow cytometry demonstrated complete association of NP with WBC in the brain (98%). Dexamethasone-loaded anti-ICAM/liposomes abrogated brain edema in this model and promoted anti-inflammatory M2 polarization of macrophages in the brain. In vivo targeted loading of WBC in the intravascular pool may provide advantages of coopting WBC predisposed to natural rapid mobilization from the lungs to the brain, connected directly via conduit vessels.
JTD Keywords: drug delivery, icam-1, inflammation, lung injury, messenger-rna, migration, model, nanoparticles, neutrophils, pharmacokinetics, t-cells, white bloodcells, Adhesion molecules, Brain, Drug delivery, Inflammation, Nanoparticles, Pharmacokinetics, White blood cells
Oliver-Cervelló, L, Martin-Gómez, H, Gonzalez-Garcia, C, Salmeron-Sanchez, M, Ginebra, MP, Mas-Moruno, C, (2023). Protease-degradable hydrogels with multifunctional biomimetic peptides for bone tissue engineering Frontiers In Bioengineering And Biotechnology 11, 1192436
Mimicking bone extracellular matrix (ECM) is paramount to develop novel biomaterials for bone tissue engineering. In this regard, the combination of integrin-binding ligands together with osteogenic peptides represents a powerful approach to recapitulate the healing microenvironment of bone. In the present work, we designed polyethylene glycol (PEG)-based hydrogels functionalized with cell instructive multifunctional biomimetic peptides (either with cyclic RGD-DWIVA or cyclic RGD-cyclic DWIVA) and cross-linked with matrix metalloproteinases (MMPs)-degradable sequences to enable dynamic enzymatic biodegradation and cell spreading and differentiation. The analysis of the intrinsic properties of the hydrogel revealed relevant mechanical properties, porosity, swelling and degradability to engineer hydrogels for bone tissue engineering. Moreover, the engineered hydrogels were able to promote human mesenchymal stem cells (MSCs) spreading and significantly improve their osteogenic differentiation. Thus, these novel hydrogels could be a promising candidate for applications in bone tissue engineering, such as acellular systems to be implanted and regenerate bone or in stem cells therapy.Copyright © 2023 Oliver-Cervelló, Martin-Gómez, Gonzalez-Garcia, Salmeron-Sanchez, Ginebra and Mas-Moruno.
JTD Keywords: biomaterials, cross-linking, dwiva, functionalization, hydrogel, integrin, kinetics, marrow stromal cells, matrices, multifunctionality, myogenic differentiation, osteogenic differentiation, regeneration, stem-cells, Biomimetic peptides, Dwiva, Functionalization, Hydrogel, Multifunctionality, Osteogenic differentiation, Poly(ethylene glycol) hydrogels
Riera, R, Archontakis, E, Cremers, G, de Greef, T, Zijlstra, P, Albertazzi, L, (2023). Precision and Accuracy of Receptor Quantification on Synthetic and Biological Surfaces Using DNA-PAINT Acs Sensors 8, 80-93
Characterization of the number and distribution of biological molecules on 2D surfaces is of foremost importance in biology and biomedicine. Synthetic surfaces bearing recognition motifs are a cornerstone of biosensors, while receptors on the cell surface are critical/vital targets for the treatment of diseases. However, the techniques used to quantify their abundance are qualitative or semi-quantitative and usually lack sensitivity, accuracy, or precision. Detailed herein a simple and versatile workflow based on super-resolution microscopy (DNA-PAINT) was standardized to improve the quantification of the density and distribution of molecules on synthetic substrates and cell membranes. A detailed analysis of accuracy and precision of receptor quantification is presented, based on simulated and experimental data. We demonstrate enhanced accuracy and sensitivity by filtering out non-specific interactions and artifacts. While optimizing the workflow to provide faithful counting over a broad range of receptor densities. We validated the workflow by specifically quantifying the density of docking strands on a synthetic sensor surface and the densities of PD1 and EGF receptors (EGFR) on two cellular models.
JTD Keywords: binding, biosensors, cancer, expression, kinetics, localization microscopy, quantification, receptors, single-molecule, super-resolution microscopy, Biosensors, Dna-paint, Quantification, Receptors, Single-molecule, Super-resolution microscopy, Superresolution microscopy
Kaurin, D, Bal, PK, Arroyo, M, (2022). Peeling dynamics of fluid membranes bridged by molecular bonds: moving or breaking Journal Of The Royal Society Interface 19, 20220183
Biological adhesion is a critical mechanical function of complex organisms. At the scale of cell-cell contacts, adhesion is remarkably tunable to enable both cohesion and malleability during development, homeostasis and disease. It is physically supported by transient and laterally mobile molecular bonds embedded in fluid membranes. Thus, unlike specific adhesion at solid-solid or solid-fluid interfaces, peeling at fluid-fluid interfaces can proceed by breaking bonds, by moving bonds or by a combination of both. How the additional degree of freedom provided by bond mobility changes the mechanics of peeling is not understood. To address this, we develop a theoretical model coupling diffusion, reactions and mechanics. Mobility and reaction rates determine distinct peeling regimes. In a diffusion-dominated Stefan-like regime, bond motion establishes self-stabilizing dynamics that increase the effective fracture energy. In a reaction-dominated regime, peeling proceeds by travelling fronts where marginal diffusion and unbinding control peeling speed. In a mixed reaction-diffusion regime, strengthening by bond motion competes with weakening by bond breaking in a force-dependent manner, defining the strength of the adhesion patch. In turn, patch strength depends on molecular properties such as bond stiffness, force sensitivity or crowding. We thus establish the physical rules enabling tunable cohesion in cellular tissues and in engineered biomimetic systems.
JTD Keywords: cell–cell adhesion, peeling, Adhesive contact, Cadherins, Cell-cell adhesion, Detachment, Detailed mechanics, Diffusion, Growth, Kinetics, Peeling, Red-blood-cells, Repulsion, Separation, Vesicle adhesion
Riera, R, Hogervorst, TP, Doelman, W, Ni, Y, Pujals, S, Bolli, E, Codée, JDC, van Kasteren, SI, Albertazzi, L, (2021). Single-molecule imaging of glycan–lectin interactions on cells with Glyco-PAINT Nature Chemical Biology 17, 1281-1288
Most lectins bind carbohydrate ligands with relatively low affinity, making the identification of optimal ligands challenging. Here we introduce a point accumulation in nanoscale topography (PAINT) super-resolution microscopy method to capture weak glycan-lectin interactions at the single-molecule level in living cells (Glyco-PAINT). Glyco-PAINT exploits weak and reversible sugar binding to directly achieve single-molecule detection and quantification in cells and is used to establish the relative kon and koff rates of a synthesized library of carbohydrate-based probes, as well as the diffusion coefficient of the receptor-sugar complex. Uptake of ligands correlates with their binding affinity and residence time to establish structure-function relations for various synthetic glycans. We reveal how sugar multivalency and presentation geometry can be optimized for binding and internalization. Overall, Glyco-PAINT represents a powerful approach to study weak glycan-lectin interactions on the surface of living cells, one that can be potentially extended to a variety of lectin-sugar interactions.© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
JTD Keywords: dc-sign, density, dimerization, endocytosis, lateral mobility, ligand-binding, mannose receptor, proteins, recognition, Animal, Animals, Cell membrane, Cell membrane permeability, Chemistry, Cho cell line, Cho cells, Cricetulus, Cysteine-rich domain, Kinetics, Lectin, Lectins, Ligand, Ligands, Molecular library, Multivariate analysis, Polysaccharide, Polysaccharides, Procedures, Protein binding, Single molecule imaging, Small molecule libraries, Structure activity relation, Structure-activity relationship
Mares, AG, Pacassoni, G, Marti, JS, Pujals, S, Albertazzi, L, (2021). Formulation of tunable size PLGA-PEG nanoparticles for drug delivery using microfluidic technology Plos One 16, e0251821
Amphiphilic block co-polymer nanoparticles are interesting candidates for drug delivery as a result of their unique properties such as the size, modularity, biocompatibility and drug loading capacity. They can be rapidly formulated in a nanoprecipitation process based on self-assembly, resulting in kinetically locked nanostructures. The control over this step allows us to obtain nanoparticles with tailor-made properties without modification of the co-polymer building blocks. Furthermore, a reproducible and controlled formulation supports better predictability of a batch effectiveness in preclinical tests. Herein, we compared the formulation of PLGA-PEG nanoparticles using the typical manual bulk mixing and a microfluidic chip-assisted nanoprecipitation. The particle size tunability and controllability in a hydrodynamic flow focusing device was demonstrated to be greater than in the manual dropwise addition method. We also analyzed particle size and encapsulation of fluorescent compounds, using the common bulk analysis and advanced microscopy techniques: Transmission Electron Microscopy and Total Internal Reflection Microscopy, to reveal the heterogeneities occurred in the formulated nanoparticles. Finally, we performed in vitro evaluation of obtained NPs using MCF-7 cell line. Our results show how the microfluidic formulation improves the fine control over the resulting nanoparticles, without compromising any appealing property of PLGA nanoparticle. The combination of microfluidic formulation with advanced analysis methods, looking at the single particle level, can improve the understanding of the NP properties, heterogeneities and performance.
JTD Keywords: controlled-release, doxorubicin, encapsulation, functional nanoparticles, nanoprecipitation, pharmacokinetics, polymeric nanoparticles, shape, surface-chemistry, Breast neoplasms, Drug carriers, Drug delivery systems, Female, Humans, In-vitro, Mcf-7 cells, Microfluidics, Nanoparticles, Polyesters, Polyethylene glycol-poly(lactide-co-glycolide), Polyethylene glycols, Polymers
Woythe, L, Tito, NB, Albertazzi, L, (2021). A quantitative view on multivalent nanomedicine targeting Advanced Drug Delivery Reviews 169, 1-21
© 2020 The Authors Although the concept of selective delivery has been postulated over 100 years ago, no targeted nanomedicine has been clinically approved so far. Nanoparticles modified with targeting ligands to promote the selective delivery of therapeutics towards a specific cell population have been extensively reported. However, the rational design of selective particles is still challenging. One of the main reasons for this is the lack of quantitative theoretical and experimental understanding of the interactions involved in cell targeting. In this review, we discuss new theoretical models and experimental methods that provide a quantitative view of targeting. We show the new advancements in multivalency theory enabling the rational design of super-selective nanoparticles. Furthermore, we present the innovative approaches to obtain key targeting parameters at the single-cell and single molecule level and their role in the design of targeting nanoparticles. We believe that the combination of new theoretical multivalent design and experimental methods to quantify receptors and ligands aids in the rational design and clinical translation of targeted nanomedicines.
JTD Keywords: binding-kinetics, biological identity, biomolecular corona, blood-brain-barrier, drug-delivery, gold nanoparticles, multivalency, nanotechnology, protein corona, quantitative characterization, rational design, super-selectivity, superresolution microscopy, tumor heterogeneity, Ligand-receptor interactions, Multivalency, Nanotechnology, Quantitative characterization, Rational design, Super-selectivity
Seuma, M, Faure, AJ, Badia, M, Lehner, B, Bolognesi, B, (2021). The genetic landscape for amyloid beta fibril nucleation accurately discriminates familial Alzheimer's disease mutations Elife 10, e63364
Plaques of the amyloid beta (A beta) peptide are a pathological hallmark of Alzheimer's disease (AD), the most common form of dementia. Mutations in A beta also cause familial forms of AD (fAD). Here, we use deep mutational scanning to quantify the effects of >14,000 mutations on the aggregation of A beta. The resulting genetic landscape reveals mechanistic insights into fibril nucleation, including the importance of charge and gatekeeper residues in the disordered region outside of the amyloid core in preventing nucleation. Strikingly, unlike computational predictors and previous measurements, the empirical nucleation scores accurately identify all known dominant fAD mutations in A beta, genetically validating that the mechanism of nucleation in a cell-based assay is likely to be very similar to the mechanism that causes the human disease. These results provide the first comprehensive atlas of how mutations alter the formation of any amyloid fibril and a resource for the interpretation of genetic variation in A beta.
JTD Keywords: aggregation, kinetics, oligomers, onset, rates, state, Aggregation, Alzheimer disease, Alzheimer's, Amyloid, Amyloid beta-peptides, Computational biology, Deep mutagenesis, Dna mutational analysis, Genetics, Genomics, High-throughput nucleotide sequencing, Kinetics, Mutation, Nucleation, Oligomers, Onset, Plasmids, Precursor protein, Rates, S. cerevisiae, Saccharomyces cerevisiae, State, Systems biology
Vukomanovic, M., Torrents, E., (2019). High time resolution and high signal-to-noise monitoring of the bacterial growth kinetics in the presence of plasmonic nanoparticles Journal of Nanobiotechnology 17, (1), 21
Background: Emerging concepts for designing innovative drugs (i.e., novel generations of antimicrobials) frequently include nanostructures, new materials, and nanoparticles (NPs). Along with numerous advantages, NPs bring limitations, partly because they can limit the analytical techniques used for their biological and in vivo validation. From that standpoint, designing innovative drug delivery systems requires advancements in the methods used for their testing and investigations. Considering the well-known ability of resazurin-based methods for rapid detection of bacterial metabolisms with very high sensitivity, in this work we report a novel optimization for tracking bacterial growth kinetics in the presence of NPs with specific characteristics, such as specific optical properties.
Results: Arginine-functionalized gold composite (HAp/Au/arginine) NPs, used as the NP model for validation of the method, possess plasmonic properties and are characterized by intensive absorption in the UV/vis region with a surface plasmon resonance maximum at 540 nm. Due to the specific optical properties, the NP absorption intensively interferes with the light absorption measured during the evaluation of bacterial growth (optical density; OD600). The results confirm substantial nonspecific interference by NPs in the signal detected during a regular turbidity study used for tracking bacterial growth. Instead, during application of a resazurin-based method (Presto Blue), when a combination of absorption and fluorescence detection is applied, a substantial increase in the signal-to-noise ratio is obtained that leads to the improvement of the accuracy of the measurements as verified in three bacterial strains tested with different growth rates (E. coli, P. aeruginosa, and S. aureus).
Conclusions: Here, we described a novel procedure that enables the kinetics of bacterial growth in the presence of NPs to be followed with high time resolution, high sensitivity, and without sampling during the kinetic study. We showed the applicability of the Presto Blue method for the case of HAp/Au/arginine NPs, which can be extended to various types of metallic NPs with similar characteristics. The method is a very easy, economical, and reliable option for testing NPs designed as novel antimicrobials.
JTD Keywords: Antimicrobial nanoparticles, Arginine-functionalized gold, Bacterial growth kinetics, Plasmonic nanoparticles, Presto Blue
Rodriguez, Segui, Bucior, I., Burger, M. M., Samitier, J., Errachid, A., Fernàndez-Busquets, X., (2007). Application of a bio-QCM to study carbohydrates self-interaction in presence of calcium Transducers '07 & Eurosensors Xxi, Digest of Technical Papers 14th International Conference on Solid-State Sensors, Actuators and Microsystems , IEEE (Lyon, France) 1-2, 1995-1998
In the past years, the quartz crystal microbalance (QCM) has been successfully applied to follow interfacial physical chemistry phenomena in a label free and real time manner. However, carbohydrate self adhesion has only been addressed partially using this technique. Carbohydrates play an important role in cell adhesion, providing a highly versatile form of attachment, suitable for biologically relevant recognition events in the initial steps of adhesion. Here, we provide a QCM study of carbohydrates' self-recognition in the presence of calcium, based on a species-specific cell recognition model provided by marine sponges. Our results show a difference in adhesion kinetics when varying either the calcium concentration (with a constant carbohydrate concentration) or the carbohydrate concentration (with constant calcium concentration).
JTD Keywords: Biomedical materials, Calcium, Cellular biophysics, Microbalances, Porous materials, Quartz, Surface chemistry/ bio-QCM, Carbohydrates self-interaction, Quartz crystal microbalance, Interfacial physical chemistry phenomena, Carbohydrate self adhesion, Biologically relevant recognition events, Marine sponges, Adhesion kinetics, Calcium concentration, Carbohydrate concentration, Biosensors, Biomedical materials, Surface chemistry, Cellular biophysics