DONATE

Publications

by Keyword: Cadherins

Barcelona-Estaje, Eva, Oliva, Mariana A G, Cunniffe, Finlay, Rodrigo-Navarro, Aleixandre, Genever, Paul, Dalby, Matthew J, Roca-Cusachs, Pere, Cantini, Marco, Salmeron-Sanchez, Manuel, (2024). N-cadherin crosstalk with integrin weakens the molecular clutch in response to surface viscosity Nature Communications 15, 8824

Mesenchymal stem cells (MSCs) interact with their surroundings via integrins, which link to the actin cytoskeleton and translate physical cues into biochemical signals through mechanotransduction. N-cadherins enable cell-cell communication and are also linked to the cytoskeleton. This crosstalk between integrins and cadherins modulates MSC mechanotransduction and fate. Here we show the role of this crosstalk in the mechanosensing of viscosity using supported lipid bilayers as substrates of varying viscosity. We functionalize these lipid bilayers with adhesion peptides for integrins (RGD) and N-cadherins (HAVDI), to demonstrate that integrins and cadherins compete for the actin cytoskeleton, leading to an altered MSC mechanosensing response. This response is characterised by a weaker integrin adhesion to the environment when cadherin ligation occurs. We model this competition via a modified molecular clutch model, which drives the integrin/cadherin crosstalk in response to surface viscosity, ultimately controlling MSC lineage commitment. The crosstalk between cell-cell and cell-matrix adhesions regulates stem cell fate. Here, the authors reveal a critical role for matrix viscosity in controlling this crosstalk, which they explain via a modified molecular clutch model.

JTD Keywords: Actin cytoskeleton, Adhesion, Animals, Arginyl-glycyl-aspartic acid, Cadherins, Cell adhesion, Cell communication, Fibronectin, Force transmission, Humans, Hydrogel, Integrins, Lipid bilayers, Matrix, Mechanotransduction, Mechanotransduction, cellular, Mesenchymal stem cells, Mobility, Oligopeptides, Osteogenic differentiation, Substrate stiffness, Vinculin, Viscosity


Donker, L, Houtekamer, R, Vliem, M, Sipieter, F, Canever, H, Gómez-González, M, Bosch-Padrós, M, Pannekoek, WJ, Trepat, X, Borghi, N, Gloerich, M, (2022). A mechanical G2 checkpoint controls epithelial cell division through E-cadherin-mediated regulation of Wee1-Cdk1 Cell Reports 41, 111475

Epithelial cell divisions are coordinated with cell loss to preserve epithelial integrity. However, how epithelia adapt their rate of cell division to changes in cell number, for instance during homeostatic turnover or wounding, is not well understood. Here, we show that epithelial cells sense local cell density through mechanosensitive E-cadherin adhesions to control G2/M cell-cycle progression. As local cell density increases, tensile forces on E-cadherin adhesions are reduced, which prompts the accumulation of the G2 checkpoint kinase Wee1 and downstream inhibitory phosphorylation of Cdk1. Consequently, dense epithelia contain a pool of cells that are temporarily halted in G2 phase. These cells are readily triggered to divide following epithelial wounding due to the consequent increase in intercellular forces and resulting degradation of Wee1. Our data collectively show that epithelial cell division is controlled by a mechanical G2 checkpoint, which is regulated by cell-density-dependent intercellular forces sensed and transduced by E-cadherin adhesions.Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

JTD Keywords: Adherens junction, Cadherins, Cell cycle, Cell cycle proteins, Cell division, Cp: cell biology, E-cadherin, Epithelial cells, Epithelial homeostasis, G2 checkpoint, G2 phase cell cycle checkpoints, Mechanical forces, Mechanotransduction, Mitosis, Phosphorylation, Proliferation


Kaurin, D, Bal, PK, Arroyo, M, (2022). Peeling dynamics of fluid membranes bridged by molecular bonds: moving or breaking Journal Of The Royal Society Interface 19, 20220183

Biological adhesion is a critical mechanical function of complex organisms. At the scale of cell-cell contacts, adhesion is remarkably tunable to enable both cohesion and malleability during development, homeostasis and disease. It is physically supported by transient and laterally mobile molecular bonds embedded in fluid membranes. Thus, unlike specific adhesion at solid-solid or solid-fluid interfaces, peeling at fluid-fluid interfaces can proceed by breaking bonds, by moving bonds or by a combination of both. How the additional degree of freedom provided by bond mobility changes the mechanics of peeling is not understood. To address this, we develop a theoretical model coupling diffusion, reactions and mechanics. Mobility and reaction rates determine distinct peeling regimes. In a diffusion-dominated Stefan-like regime, bond motion establishes self-stabilizing dynamics that increase the effective fracture energy. In a reaction-dominated regime, peeling proceeds by travelling fronts where marginal diffusion and unbinding control peeling speed. In a mixed reaction-diffusion regime, strengthening by bond motion competes with weakening by bond breaking in a force-dependent manner, defining the strength of the adhesion patch. In turn, patch strength depends on molecular properties such as bond stiffness, force sensitivity or crowding. We thus establish the physical rules enabling tunable cohesion in cellular tissues and in engineered biomimetic systems.

JTD Keywords: cell–cell adhesion, peeling, Adhesive contact, Cadherins, Cell-cell adhesion, Detachment, Detailed mechanics, Diffusion, Growth, Kinetics, Peeling, Red-blood-cells, Repulsion, Separation, Vesicle adhesion