by Keyword: Capillary
Grolleman, J, Pijnenburg, IMT, Bouten, CVC, Conte, V, Sahlgren, CM, (2025). 2.5D Model for Ex Vivo Mechanical Characterization of Sprouting Angiogenesis in Living Tissue Jove-Journal Of Visualized Experiments , e67641
Sprouting angiogenesis is the formation of new blood vessels from pre-existing vasculature and is of great importance for physiological such as tissue growth and repair and pathological processes, including cancer and metastasis. The multistep process of sprouting angiogenesis is a molecularly and mechanically driven process. It consists of induction of cellular sprout by vascular endothelial growth factor, leader/ follower cell selection through Notch signaling, directed migration of endothelial cells, and vessel fusion and stabilization. A variety of sprouting angiogenesis models have been developed over the years to better understand the underlying mechanisms of cellular sprouting. Despite advancements in understanding the molecular drivers of sprouting angiogenesis, the role of mechanical cues and the mechanical driver of sprouting angiogenesis remains underexplored due to limitations in existing models. In this study, we designed a 2.5D ex vivo model that enables us to mechanically characterize cellular sprouting from a porcine carotid artery using traction force microscopy. The model identifies distinct force patterns within the sprout, where leader cells exert pulling forces and follower cells exert pushing forces on the matrix. The model's versatility allows for the manipulation of both chemical and mechanical cues, such as matrix stiffness, enhancing its relevance to various microenvironments. Here, we demonstrate that the onset of sprouting angiogenesis is stiffness-dependent. The presented 2.5D model for quantifying cellular traction forces in sprouting angiogenesis offers a simplified yet physiologically relevant method, enhancing our understanding of cellular responses to mechanical cues, which could advance tissue engineering and therapeutic strategies against tumor angiogenesis.
JTD Keywords: Cancer, Capillary morphogenesis, Cell, In-vitro, Microscopy, Migration, Traction
Palma-Florez, S, Lagunas, A, Mir, M, (2024). Neurovascular unit on a chip: the relevance and maturity as an advanced in vitro model Neural Regeneration Research 19, 1165-1166
[No abstract available]
JTD Keywords: Alpha synuclein, Animal cell, Article, Astrocyte, Brain blood flow, Capillary endothelial cell, Cardiovascular system, Cell interaction, Coculture, Degenerative disease, Differential expression analysis, Endothelium cell, Entactin, Extracellular matrix, Fibronectin, Gene expression, Human, Human cell, Huntington chorea, Hydroxyapatite, In vitro study, Induced pluripotent stem cell, Laminin, Macrophage, Maturity, Microglia, Nervous system, Nervous system inflammation, Neuroprotection, Neurotoxicity, Nonhuman, Parkinson disease, Pericyte, Perivascular space, Personalized medicine, Shear stress, Smooth muscle cell, Three dimensional printing
Calo, Annalisa, Eleta-Lopez, Aitziber, Ondarcuhu, Thierry, Verdaguer, Albert, Bittner, Alexander M, (2021). Nanoscale wetting of single viruses Molecules 26, 5184
The epidemic spread of many viral infections is mediated by the environmental conditions and influenced by the ambient humidity. Single virus particles have been mainly visualized by atomic force microscopy (AFM) in liquid conditions, where the effect of the relative humidity on virus topography and surface cannot be systematically assessed. In this work, we employed multi-frequency AFM, simultaneously with standard topography imaging, to study the nanoscale wetting of individual Tobacco Mosaic virions (TMV) from ambient relative humidity to water condensation (RH > 100%). We recorded amplitude and phase vs. distance curves (APD curves) on top of single virions at various RH and converted them into force vs. distance curves. The high sensitivity of multifrequency AFM to visualize condensed water and sub-micrometer droplets, filling gaps between individual TMV particles at RH > 100%, is demonstrated. Dynamic force spectroscopy allows detecting a thin water layer of thickness ⁓1 nm, adsorbed on the outer surface of single TMV particles at RH < 60%.
JTD Keywords: amplitude-modulation am-afm, atomic-force microscopy, capillary, force reconstruction, multifrequency afm, nanoscale wetting, persistence, reconstruction, relative-humidity, surfaces, tobacco mosaic virus (tmv), tobamovirus, transmission, water, Amplitude-modulation am-afm, Force reconstruction, Humidity, Microscopy, atomic force, Multifrequency afm, Nanoscale wetting, Tobacco mosaic virus, Tobacco mosaic virus (tmv), Tobacco mosaic virus (tmv), nanoscale wetting, Tobacco-mosaic-virus, Virion, Water, Wettability
Lopez, M. J., Caballero, D., Campo, E. M., Perez-Castillejos, R., Errachid, A., Esteve, J., Plaza, J. A., (2008). Focused ion beam-assisted technology in sub-picolitre micro-dispenser fabrication
Journal of Micromechanics and Microengineering , 18, (7), 8
Novel medical and biological applications are driving increased interest in the fabrication of micropipette or micro-dispensers. Reduced volume samples and drug dosages are prime motivators in this effort. We have combined microfabrication technology with ion beam milling techniques to successfully produce cantilever-type polysilicon micro-dispensers with 3D enclosed microchannels. The microfabrication technology described here allows for the designing of nozzles with multiple shapes. The contribution of ion beam milling has had a large impact on the fabrication process and on further customizing shapes of nozzles and inlet ports. Functionalization tests were conducted to prove the viability of ion beam-fabricated micro-dispensers. Self-assembled monolayers were successfully formed when a gold surface was patterned with a thiol solution dispensed by the fabricated micro-dispensers.
JTD Keywords: Dip-pen nanolithography, Silicon, Deposition, Microneedles, Delivery, Arrays, Polysilicon, Capillary, Systems, Gene