DONATE

Publications

by Keyword: Cellulars

Huerta-López, C, Clemente-Manteca, A, Vellázquez-Carreras, D, Espinosa, FM, Sanchez, JG, Martínez-del-Pozo, A, García-García, M, Martín-Colomo, S, Rodríguez-Blanco, A, Esteban-González, R, Martín-Zamora, FM, Gutierrez-Rus, LI, Garcia, R, Roca-Cusachs, P, Elosegui-Artola, A, del Pozo, MA, Herrero-Galán, E, Sáez, P, Plaza, GR, Alegre-Cebollada, J, (2024). Cell response to extracellular matrix viscous energy dissipation outweighs high-rigidity sensing Science Advances 10, eadf9758

The mechanics of the extracellular matrix (ECM) determine cell activity and fate through mechanoresponsive proteins including Yes-associated protein 1 (YAP). Rigidity and viscous relaxation have emerged as the main mechanical properties of the ECM steering cell behavior. However, how cells integrate coexisting ECM rigidity and viscosity cues remains poorly understood, particularly in the high-stiffness regime. Here, we have exploited engineered stiff viscoelastic protein hydrogels to show that, contrary to current models of cell-ECM interaction, substrate viscous energy dissipation attenuates mechanosensing even when cells are exposed to higher effective rigidity. This unexpected behavior is however readily captured by a pull-and-hold model of molecular clutch-based cell mechanosensing, which also recapitulates opposite cellular response at low rigidities. Consistent with predictions of the pull-and-hold model, we find that myosin inhibition can boost mechanosensing on cells cultured on dissipative matrices. Together, our work provides general mechanistic understanding on how cells respond to the viscoelastic properties of the ECM.

JTD Keywords: Adhesion, Animals, Defines, Dynamics, Elasticity, Extracellular matrix, Force, Humans, Hydrogels, Mechanotransduction, Mechanotransduction, cellular, Stability, Tali, Viscosity, Yap/taz


Dias, JMS, Estima, D, Punte, H, Klingner, A, Marques, L, Magdanz, V, Khalil, ISM, (2022). Modeling and Characterization of the Passive Bending Stiffness of Nanoparticle-Coated Sperm Cells using Magnetic Excitation Advanced Theory And Simulations 5, 2100438

Of all the various locomotion strategies in low- (Formula presented.), traveling-wave propulsion methods with an elastic tail are preferred because they can be developed using simple designs and fabrication procedures. The only intrinsic property of the elastic tail that governs the form and rate of wave propagation along its length is the bending stiffness. Such traveling wave motion is performed by spermatozoa, which possess a tail that is characterized by intrinsic variable stiffness along its length. In this paper, the passive bending stiffness of the magnetic nanoparticle-coated flagella of bull sperm cells is measured using a contactless electromagnetic-based excitation method. Numerical elasto-hydrodynamic models are first developed to predict the magnetic excitation and relaxation of nanoparticle-coated nonuniform flagella. Then solutions are provided for various groups of nonuniform flagella with disparate nanoparticle coatings that relate their bending stiffness to their decay rate after the magnetic field is removed and the flagellum restores its original configuration. The numerical models are verified experimentally, and capture the effect of the nanoparticle coating on the bending stiffness. It is also shown that electrostatic self-assembly enables arbitrarily magnetizable cellular segments with variable stiffness along the flagellum. The bending stiffness is found to depend on the number and location of the magnetized cellular segments. © 2022 The Authors. Advanced Theory and Simulations published by Wiley-VCH GmbH.

JTD Keywords: cilia, flagella, flagellar propulsion, low reynolds numbers, magnetic, microswimmers, passive, sperm cell, Bending stiffness, Cells, Cellulars, Coatings, Decay (organic), Electric excitation, Excited states, Flagellar propulsion, Locomotion strategies, Low reynolds numbers, Magnetic, Magnetic excitations, Nanoparticle coatings, Passive, Propulsion methods, Self assembly, Simple++, Sperm cell, Sperm cells, Stiffness, Travelling waves, Variable stiffness, Wave propagation, Younǵs modulus