DONATE

Publications

by Keyword: Photocatalysis

Ferrer Campos, Rebeca, Bakenecker, Anna C., Chen, Yufen, Spadaro, Maria Chiara, Fraire, Juan, Arbiol, Jordi, Sánchez, Samuel, Villa, Katherine, (2024). Boosting the Efficiency of Photoactive Rod-Shaped Nanomotors via Magnetic Field-Induced Charge Separation Acs Applied Materials & Interfaces 16, 30077-30087

Photocatalytic nanomotors have attracted a lot of attention because of their unique capacity to simultaneously convert light and chemical energy into mechanical motion with a fast photoresponse. Recent discoveries demonstrate that the integration of optical and magnetic components within a single nanomotor platform offers novel advantages for precise motion control and enhanced photocatalytic performance. Despite these advancements, the impact of magnetic fields on energy transfer dynamics in photocatalytic nanomotors remains unexplored. Here, we introduce dual-responsive rod-like nanomotors, made of a TiO2/NiFe heterojunction, able to (i) self-propel upon irradiation, (ii) align with the direction of an external magnetic field, and (iii) exhibit enhanced photocatalytic performance. Consequently, when combining light irradiation with a homogeneous magnetic field, these nanomotors exhibit increased velocities attributed to their improved photoactivity. As a proof-of-concept, we investigated the ability of these nanomotors to generate phenol, a valuable chemical feedstock, from benzene under combined optical and magnetic fields. Remarkably, the application of an external magnetic field led to a 100% increase in the photocatalytic phenol generation in comparison with light activation alone. By using various state-of-the-art techniques such as photoelectrochemistry, electrochemical impedance spectroscopy, photoluminescence, and electron paramagnetic resonance, we characterized the charge transfer between the semiconductor and the alloy component, revealing that the magnetic field significantly improved charge pair separation and enhanced hydroxyl radical generation. Consequently, our work provides valuable insights into the role of magnetic fields in the mechanisms of light-driven photocatalytic nanomotors for designing more effective light-driven nanodevices for selective oxidations.

JTD Keywords: Charge transfer, Dual-responsive nanomotors, Magnetic properties, Photoactive nanomotors, Photocatalysis, Selective oxidations


Abramov, A, Maiti, B, Keridou, I, Puiggalí, J, Reiser, O, Díaz, DD, (2021). A pH-Triggered Polymer Degradation or Drug Delivery System by Light-Mediated Cis/Trans Isomerization of o-Hydroxy Cinnamates Macromolecular Rapid Communications 42, 2100213

A new methodology for the pH-triggered degradation of polymers or for the release of drugs under visible light irradiation based on the cyclization of ortho-hydroxy-cinnamates (oHC) to coumarins is described. The key oHC structural motif can be readily incorporated into the rational design of novel photocleavable polymers via click chemistry. This main-chain moiety undergoes a fast photocleavage when irradiated with 455 nm light provided that a suitable base is added. A series of polyethylene glycol-alt-ortho-hydroxy cinnamate (polyethylene glycol (PEG)(n)-alt-oHC)-based polymers are synthesized and the time-dependent visible-light initiated cleavage of the photoactive monomer and polymer is investigated in solution by a variety of spectroscopic and chromatographic techniques. The photo-degradation behavior of the water-soluble poly(PEG(2000)-alt-oHC) is investigated within a broad pH range (pH = 2.1-11.8), demonstrating fast degradation at pH 11.8, while the stability of the polymer is greatly enhanced at pH 2.1. Moreover, the neat polymer shows long-term stability under daylight conditions, thus allowing its storage without special precautions. In addition, two water-soluble PEG-based drug-carrier molecules (mPEG(2000)-oHC-benzhydrol/phenol) are synthesized and used for drug delivery studies, monitoring the process by UV-vis spectroscopy in an ON/OFF intermittent manner.

JTD Keywords: coumarins, drug delivery, e/z-double bond isomerization, o-hydroxy cinnamates, polymer degradation, Aliphatic compounds, Antioxidant activity, Antitumor, Chromatographic techniques, Chromatography, Cis/trans isomerization, Controlled drug delivery, Coumarin derivatives, Coumarins, Drug delivery, Drug delivery system, E/z-double bond isomerization, Films, Hydrogels, Image enhancement, Light, Long term stability, O-hydroxy cinnamates, Particles, Photoactive monomers, Photodegradation, Polyethylene glycols, Polyethylenes, Polymer degradation, Responsive polymers, Salts, Structural motifs, Synthesis (chemical), Targeted drug delivery, Visible light photocatalysis, Visible-light irradiation