by Keyword: Diagnostics
Resina, L, Alemán, C, Ferreira, FC, Esteves, T, (2023). Protein-imprinted polymers: How far have "plastic antibodies" come? Biotechnology Advances 68, 108220
Antibodies are highly selective and sensitive, making them the gold standard for recognition affinity tools. However, their production cost is high and their downstream processing is time-consuming. Molecularly imprinted polymers (MIPs) are tailor-made by incorporating specific molecular recognition sites in their structure, thus translating into receptor-like activity mode of action. The interest in molecular imprinting technology, applied to biomacromolecules, has increased in the past decade. MIPs, produced using biomolecules as templates, commonly referred to as "plastic antibodies" or "artificial receptors", have been considered as suitable cheaper and easy to produce alternatives to antibodies. Research on MIPs, designed to recognize proteins or peptides is particularly important, with potential contributions towards biomedical applications, namely biosensors and targeted drug delivery systems. This mini review will cover recent advances on (bio)molecular imprinting technology, where proteins or peptides are targeted or mimicked for sensing and therapeutic applications. Polymerization methods are reviewed elsewhere, being out of the scope of this review. Template selection and immobilization approaches, monomers and applications will be discussed, highlighting possible drawbacks and gaps in research.Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
JTD Keywords: artificial antibodies, assay, biomimetics, biomolecules, biosensors, delivery, diagnostics, drug delivery, electrochemical detection, nanoparticles, receptors, science-and-technology, selective recognition, selective targeting, separation, templates, Artificial antibodies, Biomimetics, Biomolecules, Biosensors, Diagnostics, Drug delivery, Molecularly imprinted polymers, Nanoparticles, Selective targeting, Solid-phase synthesis
Lakey, A., Ali, Z., Scott, S. M., Chebil, S., Korri-Youssoufi, H., Hunor, S., Ohlander, A., Kuphal, M., Samitier, J., (2019). Impedimetric array in polymer microfluidic cartridge for low cost point-of-care diagnostics Biosensors and Bioelectronics 129, 147-154
Deep Vein Thrombosis and pulmonary embolism (DVT/PE) is one of the most common causes of unexpected death for hospital in-patients. D-dimer is used as a biomarker within blood for the diagnosis of DVT/PE. We report a low-cost microfluidic device with a conveniently biofunctionalised interdigitated electrode (IDE) array and a portable impedimetric reader as a point-of-care (POC) device for the detection of D-dimer to aid diagnosis of DVT/PE. The IDE array elements, fabricated on a polyethylenenaphtalate (PEN) substrate, are biofunctionalised in situ after assembly of the microfluidic device by electropolymerisation of a copolymer of polypyrrole to which is immobilised a histidine tag anti-D-Dimer antibody. The most consistent copolymer films were produced using chronopotentiometry with an applied current of 5μA for a period of 50 s using a two-electrode system. The quality of the biofunctionalisation was monitored using optical microscopy, chronopotentiometry curves and impedimetric analysis. Measurement of clinical plasma sample with a D-dimer at concentration of 437 ng/mL with 15 biofunctionalised IDE array electrodes gave a ratiometric percentage of sample reading against the blank with an average value of 124 ± 15 at 95% confidence. We have demonstrated the concept of a low cost disposable microfluidic device with a receptor functionalised on the IDE array for impedimetric detection towards POC diagnostics. Changing the receptor on the IDE array would allow this approach to be used for the direct detection of a wide range of analytes in a low cost manner.
JTD Keywords: Electropolymerisation, Impedimetric sensing, Interdigitated electrodes, Microfluidics, Point-of-care diagnostics
Leder, R. S., Schlotthauer, G., Penzel, T., Jané, R., (2010). The natural history of the sleep and respiratory engineering track at EMBC 1988 to 2010 Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 288-291
Sleep science and respiratory engineering as medical subspecialties and research areas grew up side-by-side with biomedical engineering. The formation of EMBS in the 1950's and the discovery of REM sleep in the 1950's led to parallel development and interaction of sleep and biomedical engineering in diagnostics and therapeutics.
JTD Keywords: Practical/ biomedical equipment, Biomedical measurement, Patient diagnosis, Patient monitoring, Patient treatment, Pneumodynamics, Sleep/ sleep engineering, Respiratory engineering, Automatic sleep analysis, Automatic sleep interpretation systems, Breathing, Biomedical, Engineering, Diagnostics, Therapeutics, REM sleep, Portable, Measurement, Ambulatory measurement, Monitoring