DONATE

Publications

by Keyword: Biomedical

Johansson, Linh, Raymond, Yago, Labay, Cedric, Mateu-Sanz, Miguel, Ginebra, Maria-Pau, (2024). Enhancing the mechanical performance of 3D-printed self-hardening calcium phosphate bone scaffolds: PLGA-based strategies Ceramics International 50, 46300-46317

Over the last decade, 3D-printed porous calcium phosphates have emerged in the market for customized bone reconstruction. However, despite their excellent biological properties, the inherent brittleness is an obstacle that limits their clinical applications, as the scaffolds must withstand the surgical procedures and the mechanical stresses once implanted. Low-temperature self-hardening calcium phosphate inks offer unique possibilities to be reinforced with polymers, as they do not require high-temperature treatments. This study compares two routes for incorporating poly (lactic-co-glycolic acid) (PLGA) into 3D-printed calcium phosphate scaffolds: i) the use of a PLGA solution as a binder in an alpha-tricalcium phosphate self-hardening ink; ii) the infiltration of a PLGA solution into previously hardened 3D-printed calcium-deficient hydroxyapatite scaffolds. The influence of the added PLGA on the physical-chemical properties, mechanical performance and in vitro biological properties is assessed using a commercially available biomimetic calcium phosphate scaffold as a control. The addition of PLGA increases the plastic deformation capacity and the strength, both in compression and bending, and significantly improves the work of fracture of the scaffolds, up to an 8-fold in compression when PLGA is incorporated as a binder in the ink. Moreover, screwability tests demonstrate the enhanced fixability of the composite scaffolds in a knife-edge ridge indication with challenging fixation in the jaw. Importantly, the improvement of the mechanical properties by the addition of PLGA does not impair the good cytocompatibility of the material. Regarding the two routes studied, the PLGA incorporation in the ink is the best option in terms of overall improvement of the mechanical performance and osteogenic cell response.

JTD Keywords: Alkaline-phosphatase, B. composites, C. mechanical properties, Composite scaffold, D. apatite, Differentiation, E. biomedical application, In-vivo, Join, Regeneration


Fontana-Escartin, Adrian, El Hauadi, Karima, Perez-Madrigal, Maria M, Lanzalaco, Sonia, Turon, Pau, Aleman, Carlos, (2024). Mechanical and ex-vivo assessment of functionalized surgical sutures for bacterial infection monitoring European Polymer Journal 212, 113050

Surgical sutures are long-established medical devices that play an important role closing and healing damaged tissues and organs postoperatively. However, current commercial sutures are not able to detect infections at the wound site, which are quite frequent after surgery. In this work, we present mechanically stable smart sutures for the real-time monitoring of bacterial growth and biofilm formation. For this purpose, a conducting polymer named poly(3,4-ethylenedioxythiophene) (PEDOT), which is able to detect bacteria metabolites, was implemented as a coating onto commercial biostable sutures. A protecting hydrogel layer with adhesive properties, which was made of polydopamine-polyacrylamide (PDA-PAM), was used to prevent the detachment of the sensing coating of PEDOT upon looping and knotting the suture. The protective hydrogel preserved not only the knot mechanical properties of the suture but also the electrochemical response of the PEDOT-coating and, therefore, its ability to detect NADH from bacteria respiration. Ex-vivo assays using sutured swine intestine samples demonstrated that the suture with the PDA-PAM hydrogel layer detects the growth of bacteria in real tissues. As a proof of concept, sutures coated with PEDOT and protected with PDA-PAM were used to inhibit the local growth of bacteria in sutured intestines by applying controlled electrostimuli. Results evidenced that smart electro-responsive sutures can be used as multi-task devices focused on fighting bacterial infections, meaning not only monitoring but also hampering bacteria growth.

JTD Keywords: 4-ethylenedioxythiophene), Bacteria growth detection, Bacteria growth inhibition, Multi-task biomedical devices, Nanoparticles, Pape, Poly(3, Polydopamine-polyacrylamide, Sensor, Smart suture


Chen, SQ, Prado-Morales, C, Sánchez-deAlcázar, D, Sánchez, S, (2024). Enzymatic micro/nanomotors in biomedicine: from single motors to swarms Journal Of Materials Chemistry b 12, 2711-2719

Micro/nanomotors (MNMs) have evolved from single self-propelled entities to versatile systems capable of performing one or multiple biomedical tasks. When single MNMs self-assemble into coordinated swarms, either under external control or triggered by chemical reactions, they offer advantages that individual MNMs cannot achieve. These benefits include intelligent multitasking and adaptability to changes in the surrounding environment. Here, we provide our perspective on the evolution of MNMs, beginning with the development of enzymatic MNMs since the first theoretical model was proposed in 2005. These enzymatic MNMs hold immense promise in biomedicine due to their advantages in biocompatibility and fuel availability. Subsequently, we introduce the design and application of single motors in biomedicine, followed by the control of MNM swarms and their biomedical applications. In the end, we propose viable solutions for advancing the development of MNM swarms and anticipate valuable insights into the creation of more intelligent and controllable MNM swarms for biomedical applications.; Micro/nanomotor swarms propelled by diverse mechanisms.

JTD Keywords: Active particles, Actuation, Behaviors, Biocompatibility, Biomedical applications, Coordination reactions, Design and application, Diffusion, External control, Medical applications, Micromotors, Motion, Nanomotors, Powered nanomotors, Propulsion, Self-assemble, Surrounding environment, Theoretical modeling, Versatile system, Viable solutions


Ramirez-Alba, Maria Dolores, Molins-Martinez, Marta, Garcia-Torres, Jose, Romanini, Michela, Macovez, Roberto, Perez-Madrigal, Maria M, Aleman, Carlos, (2024). pH and electrically responsive hydrogels with adhesive property Reactive & Functional Polymers 196, 105841

Applications of sodium alginate (Alg) and polyacrylic acid (PAA) hydrogels in biomedicine are well-known. These are predefined by the strength and weakness of their properties, which in turn depend on the chemical structure and the architecture of their crosslinks. In this work, Alg biopolymer has been grafted to synthetic PAA that has been chemically crosslinked using N,N '-methylene-bisacrylamide (MBA) to produce a pH responsive hydrogel with adhesive property. The double crosslinking network, which combines MBA-mediated covalent crosslinks and ionic crosslinks in Alg domains, results in an elastic modulus that resembles that of highly anisotropic and viscoelastic human skin. After addressing the influence of the dual network onto the Alg-g-PAA hydrogel properties, a prospection of its potential as an adhesive has been made considering different surfaces (rubber, paper steel, porcine skin, etc). The bonding energy onto porcine skin, 32.6 +/- 4.6 J/m2, revealed that the Alg-g-PAA hydrogel can be proposed in the biomedical field as tissue adhesive for wound healing applications. Finally, the hydrogel has been semi-interpenetrated with poly(hydroxymethyl-3,4-ethylenedioxythiophene) (PEDOT-MeOH) chains through a chemical oxidative polymerization process. The resulting hydrogel, Alg-g- PAA/PEDOT-MeOH, which is even more porous than Alg-g-PAA, in addition to being electro-responsive, maintains adhesive properties.

JTD Keywords: Adhesion properties, Adhesion properties,biomedical applications,bonding energy,dual network,conducting hydrogel, Adhesive properties, Adhesives, Biomedical applications, Biopolymers, Bonding energies, Bonding energy, Chemical bonds, Conducting hydrogels, Crosslinking, Dual network, Hydrogels, Medical applications, Methylenebisacrylamide, Poly(acrylic acid), Porcine skin, Property, Rational design,film, Sodium alginate


Fontana-Escartín, A, Lanzalaco, S, Bertran, O, Aradilla, D, Alemán, C, (2023). Aqueous alginate/MXene inks for 3D printable biomedical devices Colloids And Surfaces A-Physicochemical And Engineering Aspects 671, 131632

Electrochemically responsive hydrogel networks have been obtained usin g printable inks made of a biopolymer, alginate (Alg), and an inorganic 2D material , MXene (titaniu m carbide, Ti3C2Tx) nanosheets. While MXene offers an electrically conductive pathway for electron transfer and Alg provides an interconnected framework for ion diffusion, the printed nanocomposite results, after gelation, in an extended active interface for redox reactions, being an ideal framework to design and construct flexible devices for biomedical applications. In this work, after characterization, we demonstrate that hydrogels obtained by cross-linking printed Alg /MXene inks exhibit great potential for bioelectronics. More specifically, we prove that flexible Alg/MXene hydrogels act as self-supported electroactive electrodes for the electrochemical detection of bioanalytes, such as dopamine, with a performance similar to that achieved using more sophisticated electrodes, as for example those containing conducting poly-mers and electrocatalytic gold nanoparticles. In addition, Alg/MXene hydrogels have been successfully used to regulate the release of a previously loaded broad spectrum antibiotic (chloramphenicol) by electrical stimulation.

JTD Keywords: 3d-printing, Biomedical application s, Composites, Conducting polymers, Drug release, Electroresponsive hydrogels, Fabrication, Hydrogels, Platform, Sensors, Strategy, Surface, Thin-film, Titanium carbide


Lanzalaco, S, Weis, C, Traeger, KA, Turon, P, Alemán, C, Armelin, E, (2023). Mechanical Properties of Smart Polypropylene Meshes: Effects of Mesh Architecture, Plasma Treatment, Thermosensitive Coating, and Sterilization Process Acs Biomaterials Science & Engineering 9, 3699-3711

Smart polypropylene (PP) hernia meshes were proposed to detect surgical infections and to regulate cell attachment-modulated properties. For this purpose, lightweight and midweight meshes were modified by applying a plasma treatment for subsequent grafting of a thermosensitive hydrogel, poly(N-isopropylacrylamide) (PNIPAAm). However, both the physical treatment with plasma and the chemical processes required for the covalent incorporation of PNIPAAm can modify the mechanical properties of the mesh and thus have an influence in hernia repair procedures. In this work, the mechanical performance of plasma-treated and hydrogel-grafted meshes preheated at 37 °C has been compared with standard meshes using bursting and the suture pull out tests. Furthermore, the influence of the mesh architecture, the amount of grafted hydrogel, and the sterilization process on such properties have been examined. Results reveal that although the plasma treatment reduces the bursting and suture pull out forces, the thermosensitive hydrogel improves the mechanical resistance of the meshes. Moreover, the mechanical performance of the meshes coated with the PNIPAAm hydrogel is not influenced by ethylene oxide gas sterilization. Micrographs of the broken meshes evidence the role of the hydrogel as reinforcing coating for the PP filaments. Overall, results confirm that the modification of PP medical textiles with a biocompatible thermosensitive hydrogel do not affect, and even improve, the mechanical requirements necessary for the implantation of these prostheses in vivo.

JTD Keywords: biomaterials, bursting test, etox sterilization, hernia repair, hydrogels, infection, poly(n-isopropylacrylamide), pull outtest, surgical mesh, Abdominal-wall, Biomedical implant, Bursting test, Etox sterilization, Poly(n-isopropylacrylamide), Pull out test, Surgical mesh


Lanzalaco, S, Mingot, J, Torras, J, Alemán, C, Armelin, E, (2023). Recent Advances in Poly(N-isopropylacrylamide) Hydrogels and Derivatives as Promising Materials for Biomedical and Engineering Emerging Applications Advanced Engineering Materials 25,

De Matteis, V, Rizzello, L, Cascione, M, Pellegrino, P, Singh, J, Manno, D, Rinaldi, R, (2022). Sustainable Synthesis of FITC Chitosan-Capped Gold Nanoparticles for Biomedical Applications Clean Technologies 4, 942-953

The quest for novel nanoscale materials for different applications necessitates that they are easy to obtain and have excellent physical properties and low toxicity. Moreover, considering the ongoing environmental impact of noxious chemical waste products, it is important to adopt eco-friendly approaches for nanoparticle synthesis. In this work, a natural polymer (medium molecular weight chitosan) derived from chitin was employed as a reducing agent to obtain gold nanoparticles (AuNPs) with a chitosan shell (AuNPs@CS) by a microwave oven. The chitosan is economically viable and cost-competitive in the market showing also nontoxic behavior in the environment and living organisms. The synthesized AuNPs@CS-FITC NPs were fully characterized by spectroscopic and microscopic characterization techniques. The size distribution of NPs was about 15 nm, which is a suitable dimension to use in biomedical applications due to their high tissue penetration, great circulation in blood, and optimal clearance as well as low toxicity. The prepared polymer-capped NPs were further functionalized with a fluorescent molecule, i.e., Fluorescein-5-isothiocyanate (FITC), to perform imaging in the cell. The results highlighted the goodness of the synthesis procedure, as well as the high internalization rate that resulted in an optimal fluorescence intensity. Thus, this work presents a good sustainable/green approach-mediated polymer nanocomposite for various applications in the field of diagnostic imaging.

JTD Keywords: Agent, Biomedical, Fluorescent, Gold nanoparticles, Green synthesis, Nanomaterials, Silver nanoparticles


Lozano-Garcia, M, Estrada-Petrocelli, L, Blanco-Almazan, D, Tas, B, Cho, PSP, Moxham, J, Rafferty, GF, Torres, A, Jane, R, Jolley, CJ, (2022). Noninvasive Assessment of Neuromechanical and Neuroventilatory Coupling in COPD Ieee Journal Of Biomedical And Health Informatics 26, 3385-3396

This study explored the use of parasternal second intercostal space and lower intercostal space surface electromyogram (sEMG) and surface mechanomyogram (sMMG) recordings (sEMGpara and sMMGpara, and sEMGlic and sMMGlic, respectively) to assess neural respiratory drive (NRD), neuromechanical (NMC) and neuroventilatory (NVC) coupling, and mechanical efficiency (MEff) noninvasively in healthy subjects and chronic obstructive pulmonary disease (COPD) patients. sEMGpara, sMMGpara, sEMGlic, sMMGlic, mouth pressure (Pmo), and volume (Vi) were measured at rest, and during an inspiratory loading protocol, in 16 COPD patients (8 moderate and 8 severe) and 9 healthy subjects. Myographic signals were analyzed using fixed sample entropy and normalized to their largest values (fSEsEMGpara%max, fSEsMMGpara%max, fSEsEMGlic%max, and fSEsMMGlic%max). fSEsMMGpara%max, fSEsEMGpara%max, and fSEsEMGlic%max were significantly higher in COPD than in healthy participants at rest. Parasternal intercostal muscle NMC was significantly higher in healthy than in COPD participants at rest, but not during threshold loading. Pmo-derived NMC and MEff ratios were lower in severe patients than in mild patients or healthy subjects during threshold loading, but differences were not consistently significant. During resting breathing and threshold loading, Vi-derived NVC and MEff ratios were significantly lower in severe patients than in mild patients or healthy subjects. sMMG is a potential noninvasive alternative to sEMG for assessing NRD in COPD. The ratios of Pmo and Vi to sMMG and sEMG measurements provide wholly noninvasive NMC, NVC, and MEff indices that are sensitive to impaired respiratory mechanics in COPD and are therefore of potential value to assess disease severity in clinical practice. Author

JTD Keywords: biomedical measurement, chronic obstructive pulmonary disease, couplings, diaphragm, disease severity, efficiency, electromyography, exacerbations, healthy volunteers, inspiratory muscles, loading, mechanomyography, obstructive pulmonary-disease, pressure measurement, protocols, respiratory mechanics, respiratory muscles, responsiveness, spirometry, stimulation, volume measurement, At rests, Biomedical measurement, Biomedical measurements, Chronic obstructive pulmonary disease, Couplings, Disease severity, Efficiency ratio, Electromyography, Healthy subjects, Healthy volunteers, Loading, Mechanical efficiency, Mechanomyogram, Muscle, Muscles, Neural respiratory drive, Noninvasive medical procedures, Pressure measurement, Protocols, Pulmonary diseases, Surface electromyogram, Volume measurement


Espinoso, A, Andrzejak, RG, (2022). Phase irregularity: A conceptually simple and efficient approach to characterize electroencephalographic recordings from epilepsy patients Physical Review e 105, 34212

The severe neurological disorder epilepsy affects almost 1% of the world population. For patients who suffer from pharmacoresistant focal-onset epilepsy, electroencephalographic (EEG) recordings are essential for the localization of the brain area where seizures start. Apart from the visual inspection of the recordings, quantitative EEG signal analysis techniques proved to be useful for this purpose. Among other features, regularity versus irregularity and phase coherence versus phase independence allowed characterizing brain dynamics from the measured EEG signals. Can phase irregularities also characterize brain dynamics? To address this question, we use the univariate coefficient of phase velocity variation, defined as the ratio of phase velocity standard deviation and the mean phase velocity. Beyond that, as a bivariate measure we use the classical mean phase coherence to quantify the degree of phase locking. All phase-based measures are combined with surrogates to test null hypotheses about the dynamics underlying the signals. In the first part of our analysis, we use the Rössler model system to study our approach under controlled conditions. In the second part, we use the Bern-Barcelona EEG database which consists of focal and nonfocal signals extracted from seizure-free recordings. Focal signals are recorded from brain areas where the first seizure EEG signal changes can be detected, and nonfocal signals are recorded from areas that are not involved in the seizure at its onset. Our results show that focal signals have less phase variability and more phase coherence than nonfocal signals. Once combined with surrogates, the mean phase velocity proved to have the highest discriminative power between focal and nonfocal signals. In conclusion, conceptually simple and easy to compute phase-based measures can help to detect features induced by epilepsy from EEG signals. This holds not only for the classical mean phase coherence but even more so for univariate measures of phase irregularity. © 2022 American Physical Society.

JTD Keywords: brain, entropy, epileptogenic networks, functional connectivity, hilbert transform, seizure onset, surrogate data, synchronization, time-series, Biomedical signal processing, Brain areas, Brain dynamics, Dynamics, Electroencephalographic signals, Electroencephalography, Electrophysiology, Intracranial eeg signals, Localisation, Neurological disorders, Neurology, Phase based, Phase coherence, Signal detection, Simple++, Univariate, Velocity, World population


Sans, J, Arnau, M, Sanz, V, Turon, P, Alemán, C, (2022). Polarized Hydroxyapatite: New Insights and Future Perspectives Through Systematic Electrical Characterization at the Interface Advanced Materials Interfaces 9, 2101631

Cascione, M, Rizzello, L, Manno, D, Serra, A, De Matteis, V, (2022). Green Silver Nanoparticles Promote Inflammation Shutdown in Human Leukemic Monocytes Materials (Basel) 15, 775

The use of silver nanoparticles (Ag NPs) in the biomedical field deserves a mindful analysis of the possible inflammatory response which could limit their use in the clinic. Despite the anti-cancer properties of Ag NPs having been widely demonstrated, there are still few studies concerning their involvement in the activation of specific inflammatory pathways. The inflammatory outcome depends on the synthetic route used in the NPs production, in which toxic reagents are employed. In this work, we compared two types of Ag NPs, obtained by two different chemical routes: conventional synthesis using sodium citrate and a green protocol based on leaf extracts as a source of reduction and capping agents. A careful physicochemical characterization was carried out showing spherical and stable Ag NPs with an average size between 20 nm and 35 nm for conventional and green Ag NPs respectively. Then, we evaluated their ability to induce the activation of inflammation in Human Leukemic Monocytes (THP-1) differentiated into M0 macrophages using 1 µM and 2 µM NPs concentrations (corresponded to 0.1 µg/mL and 0.2 µg/mL respectively) and two-time points (24 h and 48 h). Our results showed a clear difference in Nuclear Factor ?B (NF-?b) activation, Interleukins 6–8 (IL-6, IL-8) secretion, Tumor Necrosis Factor-? (TNF-?) and Cyclooxygenase-2 (COX-2) expression exerted by the two kinds of Ag NPs. Green Ag NPs were definitely tolerated by macrophages compared to conventional Ag NPs which induced the activation of all the factors mentioned above. Subsequently, the exposure of breast cancer cell line (MCF-7) to the green Ag NPs showed that they exhibited antitumor activity like the conventional ones, but surprisingly, using the MCF-10A line (not tumoral breast cells) the green Ag NPs did not cause a significant decrease in cell viability. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

JTD Keywords: activation, biosynthesis, gold nanoparticles, green route, inflammation response, mechanism, metal, nanotechnology, physico-chemical properties, raman-spectroscopy, resonance, silver nanoparticles, surface, Biomedical fields, Cell culture, Cell death, Chemical activation, Chemical routes, Conventional synthesis, Diseases, Green route, Inflammation response, Inflammatory response, Macrophages, Metal nanoparticles, Nf-kappa-b, Pathology, Physico-chemical properties, Physicochemical property, Property, Silver nanoparticles, Sodium compounds, Synthetic routes, Toxic reagents


Castillo-Escario, Y, Kumru, H, Ferrer-Lluis, I, Vidal, J, Jané, R, (2021). Detection of Sleep-Disordered Breathing in Patients with Spinal Cord Injury Using a Smartphone Sensors 21, 7182

Patients with spinal cord injury (SCI) have an increased risk of sleep-disordered breathing (SDB), which can lead to serious comorbidities and impact patients’ recovery and quality of life. However, sleep tests are rarely performed on SCI patients, given their multiple health needs and the cost and complexity of diagnostic equipment. The objective of this study was to use a novel smartphone system as a simple non-invasive tool to monitor SDB in SCI patients. We recorded pulse oximetry, acoustic, and accelerometer data using a smartphone during overnight tests in 19 SCI patients and 19 able-bodied controls. Then, we analyzed these signals with automatic algorithms to detect desaturation, apnea, and hypopnea events and monitor sleep position. The apnea–hypopnea index (AHI) was significantly higher in SCI patients than controls (25 ± 15 vs. 9 ± 7, p < 0.001). We found that 63% of SCI patients had moderate-to-severe SDB (AHI ? 15) in contrast to 21% of control subjects. Most SCI patients slept predominantly in supine position, but an increased occurrence of events in supine position was only observed for eight patients. This study highlights the problem of SDB in SCI and provides simple cost-effective sleep monitoring tools to facilitate the detection, understanding, and management of SDB in SCI patients.

JTD Keywords: apnea syndrome, biomedical signal processing, individuals, mhealth, monitoring, nasal resistance, people, position, prevalence, questionnaire, sample, sleep apnea, sleep position, sleep-disordered breathing, smartphone, time, Apnea-hypopnea indices, Biomedical signal processing, Biomedical signals processing, Cost effectiveness, Diagnosis, Mhealth, Monitoring, Noninvasive medical procedures, Oximeters, Oxygen-saturation, Patient rehabilitation, Simple++, Sleep apnea, Sleep position, Sleep research, Sleep-disordered breathing, Smart phones, Smartphone, Smartphones, Spinal cord injury, Spinal cord injury patients


Rial-Hermida, MI, Rey-Rico, A, Blanco-Fernandez, B, Carballo-Pedrares, N, Byrne, EM, Mano, JF, (2021). Recent Progress on Polysaccharide-Based Hydrogels for Controlled Delivery of Therapeutic Biomolecules Acs Biomaterials Science & Engineering 7, 4102-4127

A plethora of applications using polysaccharides have been developed in recent years due to their availability as well as their frequent nontoxicity and biodegradability. These polymers are usually obtained from renewable sources or are byproducts of industrial processes, thus, their use is collaborative in waste management and shows promise for an enhanced sustainable circular economy. Regarding the development of novel delivery systems for biotherapeutics, the potential of polysaccharides is attractive for the previously mentioned properties and also for the possibility of chemical modification of their structures, their ability to form matrixes of diverse architectures and mechanical properties, as well as for their ability to maintain bioactivity following incorporation of the biomolecules into the matrix. Biotherapeutics, such as proteins, growth factors, gene vectors, enzymes, hormones, DNA/RNA, and antibodies are currently in use as major therapeutics in a wide range of pathologies. In the present review, we summarize recent progress in the development of polysaccharide-based hydrogels of diverse nature, alone or in combination with other polymers or drug delivery systems, which have been implemented in the delivery of biotherapeutics in the pharmaceutical and biomedical fields. © 2021 American Chemical Society.

JTD Keywords: biodegradable dextran hydrogels, biotherapeutics, bone morphogenetic protein-2, carrageenan-based hydrogels, chitosan-based hydrogels, controlled delivery, controlled-release, cross-linked hydrogels, growth-factor delivery, hydrogels, in-vitro characterization, polysaccharides, self-healing hydrogel, stimuli-responsiveness, tissue engineering, Antibodies, Bioactivity, Biodegradability, Biomedical fields, Biomolecules, Biotherapeutics, Chemical modification, Circular economy, Controlled delivery, Controlled drug delivery, Delivery systems, Drug delivery system, Functional polymers, Hyaluronic-acid hydrogels, Hydrogels, Industrial processs, Polysaccharides, Recent progress, Renewable sources, Stimuli-responsiveness, Targeted drug delivery, Tissue engineering, Waste management


Molina, BG, Valle, LJ, Casanovas, J, Lanzalaco, S, Pérez-Madrigal, MM, Turon, P, Armelin, E, Alemán, C, (2021). Plasma-Functionalized Isotactic Polypropylene Assembled with Conducting Polymers for Bacterial Quantification by NADH Sensing Advanced Healthcare Materials 10, 2100425

Rapid detection of bacterial presence on implantable medical devices is essential to prevent biofilm formation, which consists of densely packed bacteria colonies able to withstand antibiotic-mediated killing. In this work, a smart approach is presented to integrate electrochemical sensors for detecting bacterial infections in biomedical implants made of isotactic polypropylene (i-PP) using chemical assembly. The electrochemical detection is based on the capacity of conducting polymers (CPs) to detect extracellular nicotinamide adenine dinucleotide (NADH) released from cellular respiration of bacteria, which allows distinguishing prokaryotic from eukaryotic cells. Oxygen plasma-functionalized free-standing i-PP, coated with a layer (≈1.1 µm in thickness) of CP nanoparticles obtained by oxidative polymerization, is used as working electrode for the anodic polymerization of a second CP layer (≈8.2 µm in thickness), which provides very high electrochemical activity and stability. The resulting layered material, i-PP /CP , detects the electro-oxidation of NADH in physiological media with a sensitivity 417 µA cm and a detection limit up to 0.14 × 10 m, which is below the concentration of extracellular NADH found for bacterial cultures of biofilm-positive and biofilm-negative strains. f 2 −2 −3

JTD Keywords: bacteria respiration, bacteria sensors, biomedical implants, flexible sensors, poly(3,4-ethylenedioxythiophene), Bacteria respiration, Bacteria sensors, Biomedical implants, Flexible sensors, Poly(3,4-ethylenedioxythiophene)


Ferrer-Lluis, I, Castillo-Escario, Y, Montserrat, JM, Jané, R, (2021). SleepPos app: An automated smartphone application for angle based high resolution sleep position monitoring and treatment Sensors 21, 4531

Poor sleep quality or disturbed sleep is associated with multiple health conditions. Sleep position affects the severity and occurrence of these complications, and positional therapy is one of the less invasive treatments to deal with them. Sleep positions can be self-reported, which is unreliable, or determined by using specific devices, such as polysomnography, polygraphy or cameras, that can be expensive and difficult to employ at home. The aim of this study is to determine how smartphones could be used to monitor and treat sleep position at home. We divided our research into three tasks: (1) develop an Android smartphone application (‘SleepPos’ app) which monitors angle-based high-resolution sleep position and allows to simultaneously apply positional treatment; (2) test the smartphone application at home coupled with a pulse oximeter; and (3) explore the potential of this tool to detect the positional occurrence of desaturation events. The results show how the ‘SleepPos’ app successfully determined the sleep position and revealed positional patterns of occurrence of desaturation events. The ‘SleepPos’ app also succeeded in applying positional therapy and preventing the subjects from sleeping in the supine sleep position. This study demonstrates how smartphones are capable of reliably monitoring high-resolution sleep position and provide useful clinical information about the positional occurrence of desaturation events.

JTD Keywords: accelerometry, android, apnea patients, app, association, biomedical signal processing, management, mhealth, monitoring, pathophysiology, pilot mhealth, questionnaire, sleep position, smartphone, supine position, time, Accelerometry, Android, App, Biomedical signal processing, Mhealth, Monitoring, Sleep position, Smart-phone, Smartphone, Tennis ball technique


Fontana-Escartin, A, Puiggalí-Jou, A, Lanzalaco, S, Bertran, O, Aleman, C, (2021). Manufactured Flexible Electrodes for Dopamine Detection: Integration of Conducting Polymer in 3D-Printed Polylactic Acid Advanced Engineering Materials 23, 2100002

Flexible electrochemical sensors based on electroactive materials have emerged as powerful analytical tools for biomedical applications requiring bioanalytes detection. Within this context, 3D printing is a remarkable technology for developing electrochemical devices, due to no design constraints, waste minimization, and batch manufacturing with high reproducibility. However, the fabrication of 3D printed electrodes is still limited by the in-house fabrication of conductive filaments, which requires the mixture of the electroactive material with melted of thermoplastic polymer (e.g., polylactic acid, PLA). Herein, a simple approach is presented for preparing electrochemical dopamine (DA) biosensors. Specifically, the surface of 3D-printed PLA specimens, which exhibit an elastic modulus and a tensile strength of 3.7 +/- 0.3 GPa and 47 +/- 1 MPa, respectively, is activated applying a 0.5 m NaOH solution for 30 min and, subsequently, poly(3,4-ethylenedioxythiophene) is polymerized in situ using aqueous solvent. The detection of DA with the produced sensors has been demonstrated by cyclic voltammetry, differential pulse voltammetry, and chronoamperometry. In summary, the obtained results reflect that low-cost electrochemical sensors, which are widely used in medicine and biotechnology, can be rapidly fabricated using the proposed approach that, although based on additive manufacturing, does not require the preparation of conductive filaments.

JTD Keywords: 3d printers, Additive manufacturing, Amines, Batch manufacturing, Biomedical applications, Chronoamperometry, Conducting polymer, Conducting polymers, Conductive filaments, Conservation, Cyclic voltammetry, Differential pulse voltammetry, Electroactive material, Electrochemical biosensor, Electrochemical devices, Electrochemical sensors, Electrodes, Electron emission, Flexible electrode, High reproducibility, Medical applications, Neurophysiology, Poly-3 ,4-ethylenedioxythiophene, Polyesters, Polylactic aci, Sodium hydroxide, Tensile strength, Thermoplastic polymer


Ferrer-Lluis, I, Castillo-Escario, Y, Montserrat, JM, Jané, R, (2021). Enhanced monitoring of sleep position in sleep apnea patients: Smartphone triaxial accelerometry compared with video-validated position from polysomnography Sensors 21, 3689

Poor sleep quality is a risk factor for multiple mental, cardiovascular, and cerebrovascular diseases. Certain sleep positions or excessive position changes can be related to some diseases and poor sleep quality. Nevertheless, sleep position is usually classified into four discrete values: supine, prone, left and right. An increase in sleep position resolution is necessary to better assess sleep position dynamics and to interpret more accurately intermediate sleep positions. This research aims to study the feasibility of smartphones as sleep position monitors by (1) developing algorithms to retrieve the sleep position angle from smartphone accelerometry; (2) monitoring the sleep position angle in patients with obstructive sleep apnea (OSA); (3) comparing the discretized sleep angle versus the four classic sleep positions obtained by the video-validated polysomnography (PSG); and (4) analyzing the presence of positional OSA (pOSA) related to its sleep angle of occurrence. Results from 19 OSA patients reveal that a higher resolution sleep position would help to better diagnose and treat patients with position-dependent diseases such as pOSA. They also show that smartphones are promising mHealth tools for enhanced position monitoring at hospitals and home, as they can provide sleep position with higher resolution than the gold-standard video-validated PSG.

JTD Keywords: accelerometry, actigraphy, association, biomedical signal processing, index, latency, mhealth, monitoring, pathophysiology, quality, questionnaire, score, sleep apnea, sleep position, smartphone, time, Accelerometry, Biomedical signal processing, Mhealth, Monitoring, Sleep apnea, Sleep position, Smartphone, Supine position


Hortelao, AC, Simó, C, Guix, M, Guallar-Garrido, S, Julián, E, Vilela, D, Rejc, L, Ramos-Cabrer, P, Cossío, U, Gómez-Vallejo, V, Patiño, T, Llop, J, Sánchez, S, (2021). Swarming behavior and in vivo monitoring of enzymatic nanomotors within the bladder Science Robotics 6, eabd2823

Enzyme-powered nanomotors are an exciting technology for biomedical applications due to their ability to navigate within biological environments using endogenous fuels. However, limited studies into their collective behavior and demonstrations of tracking enzyme nanomotors in vivo have hindered progress toward their clinical translation. Here, we report the swarming behavior of urease-powered nanomotors and its tracking using positron emission tomography (PET), both in vitro and in vivo. For that, mesoporous silica nanoparticles containing urease enzymes and gold nanoparticles were used as nanomotors. To image them, nanomotors were radiolabeled with either I on gold nanoparticles or F-labeled prosthetic group to urease. In vitro experiments showed enhanced fluid mixing and collective migration of nanomotors, demonstrating higher capability to swim across complex paths inside microfabricated phantoms, compared with inactive nanomotors. In vivo intravenous administration in mice confirmed their biocompatibility at the administered dose and the suitability of PET to quantitatively track nanomotors in vivo. Furthermore, nanomotors were administered directly into the bladder of mice by intravesical injection. When injected with the fuel, urea, a homogeneous distribution was observed even after the entrance of fresh urine. By contrast, control experiments using nonmotile nanomotors (i.e., without fuel or without urease) resulted in sustained phase separation, indicating that the nanomotors’ self-propulsion promotes convection and mixing in living reservoirs. Active collective dynamics, together with the medical imaging tracking, constitute a key milestone and a step forward in the field of biomedical nanorobotics, paving the way toward their use in theranostic applications. 124 18

JTD Keywords: cell, reversal, silica nanoparticles, size, step, transport, Administration, intravesical, Animals, Equipment design, Female, Gold, Metal nanoparticles, Mice, Mice, inbred c57bl, Motion, Phantoms, imaging, Positron emission tomography computed tomography, Precision medicine, Propelled micromotors, Robotics, Translational research, biomedical, Urease, Urinary bladder


Ferrer-Lluís, I., Castillo-Escario, Y., Montserrat, J. M., Jané, R., (2020). Analysis of smartphone triaxial accelerometry for monitoring sleep disordered breathing and sleep position at home IEEE Access 8, 71231 - 71244

Obstructive sleep apnea (OSA) is a sleep disorder in which repetitive upper airway obstructive events occur during sleep. These events can induce hypoxia, which is a risk factor for multiple cardiovascular and cerebrovascular diseases. OSA is also known to be position-dependent in some patients, which is referred to as positional OSA (pOSA). Screening for pOSA is necessary in order to design more personalized and effective treatment strategies. In this article, we propose analyzing accelerometry signals, recorded with a smartphone, to detect and monitor OSA at home. Our objectives were to: (1) develop an algorithm for detecting thoracic movement associated with disordered breathing events; (2) compare the performance of smartphones as OSA monitoring tools with a type 3 portable sleep monitor; and (3) explore the feasibility of using smartphone accelerometry to retrieve reliable patient sleep position data and assess pOSA. Accelerometry signals were collected through simultaneous overnight acquisition using both devices with 13 subjects. The smartphone tool showed a high degree of concordance compared to the portable device and succeeded in estimating the apnea-hypopnea index (AHI) and classifying the severity level in most subjects. To assess the agreement between the two systems, an event-by-event comparison was performed, which found a sensitivity of 90% and a positive predictive value of 80%. It was also possible to identify pOSA by determining the ratio of events occurring in a specific position versus the time spent in that position during the night. These novel results suggest that smartphones are promising mHealth tools for OSA and pOSA monitoring at home.

JTD Keywords: Accelerometry, Biomedical signal processing, mHealth, Monitoring, Sleep apnea, Sleep position, Smartphone


Xu, D., Wang, Y., Liang, C., You, Y., Sanchez, S., Ma, X., (2020). Self-propelled micro/nanomotors for on-demand biomedical cargo transportation Small 16, (27), 1902464

Micro/nanomotors (MNMs) are miniaturized machines that can perform assigned tasks at the micro/nanoscale. Over the past decade, significant progress has been made in the design, preparation, and applications of MNMs that are powered by converting different sources of energy into mechanical force, to realize active movement and fulfill on-demand tasks. MNMs can be navigated to desired locations with precise controllability based on different guidance mechanisms. A considerable research effort has gone into demonstrating that MNMs possess the potential of biomedical cargo loading, transportation, and targeted release to achieve therapeutic functions. Herein, the recent advances of self-propelled MNMs for on-demand biomedical cargo transportation, including their self-propulsion mechanisms, guidance strategies, as well as proof-of-concept studies for biological applications are presented. In addition, some of the major challenges and possible opportunities of MNMs are identified for future biomedical applications in the hope that it may inspire future research.

JTD Keywords: Biomedical applications, Cargo transportation, Guidance strategies, Micro/nanomotors, Self-propulsion


Labay, C., Hamouda, I., Tampieri, F., Ginebra, M. P., Canal, C., (2019). Production of reactive species in alginate hydrogels for cold atmospheric plasma-based therapies Scientific Reports 9, (1), 16160

In the last years, great advances have been made in therapies based in cold atmospheric plasmas (CAP). CAP generate reactive oxygen and nitrogen species (RONS) which can be transferred to liquids. These CAP activated liquids display the same biological efficacy (i.e. on killing cancer cells) as CAP themselves, opening the door for minimally invasive therapies. However, injection of a liquid in the body results in fast diffusion due to extracellular fluids and blood flow. Therefore, the development of efficient vehicles which allow local confinement and delivery of RONS to the diseased site is a fundamental requirement. In this work, we investigate the generation of RONS (H2O2, NO2−, short-lived RONS) in alginate hydrogels by comparing two atmospheric pressure plasma jets: kINPen and a helium needle, at a range of plasma treatment conditions (time, gas flow, distance to the sample). The physic-chemical properties of the hydrogels remain unchanged by the plasma treatment, while the hydrogel shows several-fold larger capacity for generation of RONS than a typical isotonic saline solution. Part of the RONS are quickly released to a receptor media, so special attention has to be put on the design of hydrogels with in-situ crosslinking. Remarkably, the hydrogels show capacity for sustained release of the RONS. The plasma-treated hydrogels remain fully biocompatible (due the fact that the species generated by plasma are previously washed away), indicating that no cytotoxic modifications have occurred on the polymer. Moreover, the RONS generated in alginate solutions showed cytotoxic potential towards bone cancer cells. These results open the door for the use of hydrogel-based biomaterials in CAP-associated therapies.

JTD Keywords: Biomedical materials, Plasma physics


Castillo-Escario, Y., Ferrer-Lluis, I., Montserrat, J. M., Jané, R., (2019). Entropy analysis of acoustic signals recorded with a smartphone for detecting apneas and hypopneas: A comparison with a commercial system for home sleep apnea diagnosis IEEE Access 7, 128224-128241

Obstructive sleep apnea (OSA) is a prevalent disease, but most patients remain undiagnosed and untreated. Here we propose analyzing smartphone audio signals for screening OSA patients at home. Our objectives were to: (1) develop an algorithm for detecting silence events and classifying them into apneas or hypopneas; (2) evaluate the performance of this system; and (3) compare the information provided with a type 3 portable sleep monitor, based mainly on nasal airflow. Overnight signals were acquired simultaneously by both systems in 13 subjects (3 healthy subjects and 10 OSA patients). The sample entropy of audio signals was used to identify apnea/hypopnea events. The apnea-hypopnea indices predicted by the two systems presented a very high degree of concordance and the smartphone correctly detected and stratified all the OSA patients. An event-by-event comparison demonstrated good agreement between silence events and apnea/hypopnea events in the reference system (Sensitivity = 76%, Positive Predictive Value = 82%). Most apneas were detected (89%), but not so many hypopneas (61%). We observed that many hypopneas were accompanied by snoring, so there was no sound reduction. The apnea/hypopnea classification accuracy was 70%, but most discrepancies resulted from the inability of the nasal cannula of the reference device to record oral breathing. We provided a spectral characterization of oral and nasal breathing to correct this effect, and the classification accuracy increased to 82%. This novel knowledge from acoustic signals may be of great interest for clinical practice to develop new non-invasive techniques for screening and monitoring OSA patients at home.

JTD Keywords: Sleep apnea, Acoustics, Monitoring, Entropy, Sensors, Microphones, Acoustics, Biomedical signal processing, mHealth, Monitoring, Sleep apnea, Smartphone


Laguna, Pablo, Garde, Ainara, Giraldo, Beatriz F., Meste, Olivier, Jané, Raimon, Sörnmo, Leif, (2018). Eigenvalue-based time delay estimation of repetitive biomedical signals Digital Signal Processing 75, 107-119

The time delay estimation problem associated with an ensemble of misaligned, repetitive signals is revisited. Each observed signal is assumed to be composed of an unknown, deterministic signal corrupted by Gaussian, white noise. This paper shows that maximum likelihood (ML) time delay estimation can be viewed as the maximization of an eigenvalue ratio, where the eigenvalues are obtained from the ensemble correlation matrix. A suboptimal, one-step time delay estimate is proposed for initialization of the ML estimator, based on one of the eigenvectors of the inter-signal correlation matrix. With this approach, the ML estimates can be determined without the need for an intermediate estimate of the underlying, unknown signal. Based on respiratory flow signals, simulations show that the variance of the time delay estimation error for the eigenvalue-based method is almost the same as that of the ML estimator. Initializing the maximization with the one-step estimates, rather than using the ML estimator alone, the computation time is reduced by a factor of 5M when using brute force maximization (M denoting the number of signals in the ensemble), and a factor of about 1.5 when using particle swarm maximization. It is concluded that eigenanalysis of the ensemble correlation matrix not only provides valuable insight on how signal energy, jitter, and noise influence the estimation process, but it also leads to a one-step estimator which can make the way for a substantial reduction in computation time.

JTD Keywords: Biomedical signals, Time delay estimation, Eigenanalysis, Ensemble analysis


Climent, A. M., Hernandez-Romero, I., Guillem, M. S., Montserrat, N., Fernandez, M. E., Atienza, F., Fernandez-Aviles, F., (2017). High resolution microscopic optical mapping of anatomical and functional reentries in human cardiac cell cultures IEEE Conference Publications Computing in Cardiology Conference (CinC), 2016 , IEEE (Vancouver, Canada) 43, 233-236

Anatomical and/or functional reentries have been proposed as one of the main mechanism of perpetuation of cardiac fibrillation processes. However, technical limitations have difficult the characterization of those reentries and are hampering the development of effective anti-arrhythmic treatments. The goal of this study is to present a novel technology to map with high resolution the center of fibrillation drivers in order to characterize the mechanisms of reentry. Cell cultures of human cardiac-like cells differentiated from pluripotent stem cells were analyzed with a novel microscopic optical mapping system. The pharmacological response to verapamil administration of each type of reentry was analyzed. In all analyzed cell cultures, a reentry was identified as the mechanism of maintenance of the arrhythmia. Interestingly, the administration of verapamil produced opposite effects on activation rate depending on the mechanisms of reentry (i.e. anatomical or functional). Microscopic optical mapping of reentries allows the identification of perpetuation mechanisms which has been demonstrated to be linked with different pharmacological response.

JTD Keywords: Stem cells, Rotors, Microscopy, Optical filters, Calcium, Optical microscopy, Biomedical optical imaging


Camara, M. A., Castillo, Y., Blanco-Almazan, D., Estrada, L., Jane, R., (2017). MHealth tools for monitoring Obstructive Sleep Apnea patients at home: Proof-of-concept Engineering in Medicine and Biology Society (EMBC) 39th Annual International Conference of the IEEE , IEEE (Seogwipo, South Korea) , 1555-1558

Obstructive Sleep Apnea (OSA) is a sleep disorder that affects mainly the adult and elderly population. Due to the high percentage of patients who remain undiagnosed and untreated because of limitations of current diagnosis methods, the management of OSA is an important social, scientific and economic problem that will be difficult to be assumed by health systems. On the other hand, smartphone platforms (mHealth systems) are being considered as an innovative solution, thanks to the integration of the essential sensors to obtain clinically relevant parameters in the same device or in combination with wireless wearable devices.

JTD Keywords: Sleep apnea, Microphones, Monitoring, Sensors, Accelerometers, Biomedical monitoring, Band-pass filters


Estrada, L., Torres, A., Sarlabous, L., Jané, R., (2016). Evaluating respiratory muscle activity using a wireless sensor platform Engineering in Medicine and Biology Society (EMBC) 38th Annual International Conference of the IEEE , IEEE (Orlando, USA) , 5769-5772

Wireless sensors are an emerging technology that allows to assist physicians in the monitoring of patients health status. This approach can be used for the non-invasive recording of the electrical respiratory muscle activity of the diaphragm (EMGdi). In this work, we acquired the EMGdi signal of a healthy subject performing an inspiratory load test. To this end, the EMGdi activity was captured from a single channel of electromyography using a wireless platform which was compared with the EMGdi and the inspiratory mouth pressure (Pmouth) recorded with a conventional lab equipment. From the EMGdi signal we were able to evaluate the neural respiratory drive, a biomarker used for assessing the respiratory muscle function. In addition, we evaluated the breathing movement and the cardiac activity, estimating two cardio-respiratory parameters: the respiratory rate and the heart rate. The correlation between the two EMGdi signals and the Pmouth improved with increasing the respiratory load (Pearson's correlation coefficient ranges from 0.33 to 0.85). The neural respiratory drive estimated from both EMGdi signals showed a positive trend with an increase of the inspiratory load and being higher in the conventional EMGdi recording. The respiratory rate comparison between measurements revealed similar values of around 16 breaths per minute. The heart rate comparison showed a root mean error of less than 0.2 beats per minute which increased when incrementing the inspiratory load. In summary, this preliminary work explores the use of wireless devices to record the muscle respiratory activity to derive several physiological parameters. Its use can be an alternative to conventional measuring systems with the advantage of being portable, lightweight, flexible and operating at low energy. This technology can be attractive for medical staff and may have a positive impact in the way healthcare is being delivered.

JTD Keywords: Biomedical monitoring, Electrodes, Medical services, Monitoring, Muscles, Wireless communication, Wireless sensor networks


Rajasekaran, V., Aranda, J., Casals, A., (2015). Compliant gait assistance triggered by user intention Engineering in Medicine and Biology Society (EMBC) 37th Annual International Conference of the IEEE , IEEE (Milan, Italy) , 3885-3888

An automatic gait initialization strategy based on user intention sensing in the context of rehabilitation with a lower-limb wearable robot is proposed and evaluated. The proposed strategy involves monitoring the human-orthosis interaction torques and initial position deviation to determine the gait initiation instant and to modify orthosis operation for gait assistance, when needed. During gait, the compliant control algorithm relies on the adaptation of the joints' stiffness in function of their interaction torques and their deviation from the desired trajectories, while maintaining the dynamic stability. As a reference input, the average of a set of recorded gaits obtained from healthy subjects is used. The algorithm has been tested with five healthy subjects showing its efficient behavior in initiating the gait and maintaining the equilibrium while walking in presence of external forces. The work is performed as a preliminary study to assist patients suffering from incomplete Spinal cord injury and Stroke.

JTD Keywords: Biomedical monitoring, Exoskeletons, Joints, Knee, Legged locomotion, Trajectory, Exoskeleton, adaptive control, gait assistance, gait initiation, rehabilitation, wearable robot


Urra, O., Casals, A., Jané, R., (2015). The impact of visual feedback on the motor control of the upper-limb Engineering in Medicine and Biology Society (EMBC) 37th Annual International Conference of the IEEE , IEEE (Milan, Italy) , 3945-3948

Stroke is a leading cause of adult disability with upper-limb hemiparesis being one of the most frequent consequences. Given that stroke only affects the paretic arm's control structure (the set of synergies and activation vectors needed to perform a movement), we propose that the control structure of the non-affected arm can serve as a physiological reference to rehabilitate the paretic arm. However, it is unclear how rehabilitation can effectively tune the control structure of a patient. The use of Visual Feedback (VF) is recommended to boost stroke rehabilitation, as it is able to positively modify neural mechanisms and improve motor performance. Thus, in this study we investigate whether VF can effectively modify the control structure of the upper-limb. We asked six neurologically intact subjects to perform a complete upper-limb rehabilitation routine comprised of 12 movements in absence and presence of VF. Our results indicate that VF significantly increases interlimb similarity both in terms of synergies and activation coefficients. However, the magnitude of improvement depended upon each subject. In general, VF brings the control structure of the nondominant side closer to the control structure of dominant side, suggesting that VF modifies the control structure towards more optimized motor patterns. This is especially interesting because stroke mainly affects the activation coefficients of patients and because it has been shown that the control of the affected side resembles that of the nondominant side. In conclusion, VF may enhance motor performance by effectively tuning the control-structure. Notably, this finding offers new insights to design improved stroke rehabilitation.

JTD Keywords: Bars, Biomedical engineering, Electrodes, Electromyography, Mirrors, Muscles, Visualization


Mir, M., Lugo, R., Tahirbegi, I. B., Samitier, J., (2014). Miniaturizable ion-selective arrays based on highly stable polymer membranes for biomedical applications Sensors 14, (7), 11844-11854

Poly(vinylchloride) (PVC) is the most common polymer matrix used in the fabrication of ion-selective electrodes (ISEs). However, the surfaces of PVC-based sensors have been reported to show membrane instability. In an attempt to overcome this limitation, here we developed two alternative methods for the preparation of highly stable and robust ion-selective sensors. These platforms are based on the selective electropolymerization of poly(3,4-ethylenedioxythiophene) (PEDOT), where the sulfur atoms contained in the polymer covalently interact with the gold electrode, also permitting controlled selective attachment on a miniaturized electrode in an array format. This platform sensor was improved with the crosslinking of the membrane compounds with poly(ethyleneglycol) diglycidyl ether (PEG), thus also increasing the biocompatibility of the sensor. The resulting ISE membranes showed faster signal stabilization of the sensor response compared with that of the PVC matrix and also better reproducibility and stability, thus making these platforms highly suitable candidates for the manufacture of robust implantable sensors.

JTD Keywords: Biomedicine, Electrochemistry, Endoscope, Implantable device, Ion-selective electrode (ISE) sensor, Ischemia, pH detection, Biocompatibility, Chemical sensors, Electrochemistry, Electrodes, Electropolymerization, Endoscopy, Functional polymers, Implants (surgical), Ion selective electrodes, Medical applications, Polyvinyl chlorides, Stabilization, Biomedical applications, Biomedicine, Implantable devices, Ion selective sensors, Ischemia, Membrane instability, pH detection, Poly(3 ,4 ethylenedioxythiophene) (PEDOT), Ion selective membranes


Jané, R., (2014). Engineering Sleep Disorders: From classical CPAP devices toward new intelligent adaptive ventilatory therapy IEEE Pulse , 5, (5), 29-32

Among the most common sleep disorders are those related to disruptions in airflow (apnea) or reductions in the breath amplitude (hypopnea) with or without obstruction of the upper airway (UA). One of the most important sleep disorders is obstructive sleep apnea (OSA). This sleep-disordered breathing, quantified by the apnea-hypopnea index (AHI), can produce a significant reduction of oxygen saturation and an abnormal elevation of carbon dioxide levels in the blood. Apnea and hypopnea episodes are associated with arousals and sleep fragmentation during the night and compensatory response of the autonomic nervous system.

JTD Keywords: Biomedical engineering, Biomedical measurements, Biomedical monitoring, Breathing disorders, Medical conditions, Medical treatment, Sleep, Sleep apnea


Estrada, L., Torres, A., Sarlabous, L., Fiz, J. A., Jané, R., (2014). Respiratory rate detection by empirical mode decomposition method applied to diaphragm mechanomyographic signals Engineering in Medicine and Biology Society (EMBC) 36th Annual International Conference of the IEEE , IEEE (Chicago, USA) , 3204-3207

Non-invasive evaluation of respiratory activity is an area of increasing research interest, resulting in the appearance of new monitoring techniques, ones of these being based on the analysis of the diaphragm mechanomyographic (MMGdi) signal. The MMGdi signal can be decomposed into two parts: (1) a high frequency activity corresponding to lateral vibration of respiratory muscles, and (2) a low frequency activity related to excursion of the thoracic cage. The purpose of this study was to apply the empirical mode decomposition (EMD) method to obtain the low frequency of MMGdi signal and selecting the intrinsic mode functions related to the respiratory movement. With this intention, MMGdi signals were acquired from a healthy subject, during an incremental load respiratory test, by means of two capacitive accelerometers located at left and right sides of rib cage. Subsequently, both signals were combined to obtain a new signal which contains the contribution of both sides of thoracic cage. Respiratory rate (RR) measured from the mechanical activity (RRMmg) was compared with that measured from inspiratory pressure signal (RRP). Results showed a Pearson's correlation coefficient (r = 0.87) and a good agreement (mean bias = -0.21 with lower and upper limits of -2.33 and 1.89 breaths per minute, respectively) between RRmmg and RRP measurements. In conclusion, this study suggests that RR can be estimated using EMD for extracting respiratory movement from low mechanical activity, during an inspiratory test protocol.

JTD Keywords: Accelerometers, Band-pass filters, Biomedical measurement, Empirical mode decomposition, Estimation, IP networks, Muscles


Juanola-Feliu, Esteve, Colomer-Farrarons, Jordi, Miribel-Català, Pere, González-Piñero, Manel, Samitier, Josep, (2014). Nano-enabled implantable device for glucose monitoring Implantable Bioelectronics (ed. Katz, Evgeny), Wiley-VCH Verlag GmbH & Co. KGaA (Weinheim, Germany) , 247-263

This chapter contains sections titled: * Introduction * Biomedical Devices for In Vivo Analysis * Conclusions and Final Recommendations * References

JTD Keywords: Technology transfer, Innovation management, Nanotechnology, Nanobiosensor, Diabetes, Biomedical device, Implantable biosensors


Juanola-Feliu, E., Colomer-Farrarons, J., Miribel-Català , P., Samitier, J., Valls-Pasola, J., (2012). Market challenges facing academic research in commercializing nano-enabled implantable devices for in-vivo biomedical analysis Technovation , 32, (3-4), 193-204

This article reports on the research and development of a cutting-edge biomedical device for continuous in-vivo glucose monitoring. This entirely public-funded process of technological innovation has been conducted at the University of Barcelona within a context of converging technologies involving the fields of medicine, physics, chemistry, biology, telecommunications, electronics and energy. The authors examine the value chain and the market challenges faced by in-vivo implantable biomedical devices based on nanotechnologies. In so doing, they trace the process from the point of applied research to the final integration and commercialization of the product, when the social rate of return from academic research can be estimated. Using a case-study approach, the paper also examines the high-tech activities involved in the development of this nano-enabled device and describes the technology and innovation management process within the value chain conducted in a University-Hospital-Industry-Administration-Citizens framework. Here, nanotechnology is seen to represent a new industrial revolution, boosting the biomedical devices market. Nanosensors may well provide the tools required for investigating biological processes at the cellular level in vivo when embedded into medical devices of small dimensions, using biocompatible materials, and requiring reliable and targeted biosensors, high speed data transfer, safely stored data, and even energy autonomy.

JTD Keywords: Biomedical device, Diabetes, Innovation management, Nanobiosensor, Nanotechnology, Research commercialization, Technology transfer, Academic research, Applied research, Barcelona, Biocompatible materials, Biological process, Biomedical analysis, Biomedical devices, Cellular levels, Converging technologies, Glucose monitoring, High-speed data transfer, Implantable biomedical devices, Implantable devices, In-vivo, Industrial revolutions, Innovation management, Medical Devices, Nanobiosensor, Rate of return, Research and development, Technological innovation, Value chains, Biological materials, Biomedical engineering, Biosensors, Commerce, Data transfer, Earnings, Engineering education, Glucose, Implants (surgical), Industrial research, Innovation, Medical problems, Nanosensors, Nanotechnology, Technology transfer, Equipment


Roa, J. J., Oncins, G., Diaz, J., Capdevila, X. G., Sanz, F., Segarra, M., (2011). Study of the friction, adhesion and mechanical properties of single crystals, ceramics and ceramic coatings by AFM Journal of the European Ceramic Society 31, (4), 429-449

This paper reviews commonly used methods of analyzing and interpreting friction, adhesion and nanoindentation with an AFM tip test data, with a particular emphasis of the testing of single crystals, metals, ceramics and ceramic coatings. Experimental results are reported on the friction, mechanical and adhesion properties of these materials. The popularity of AFM testing is evidenced by the large quantity of papers that report such measurements in the last decade. Unfortunately, a lot of information about these topics is scare in the literature. The present paper is aimed to present the basic physical modelling employed and also some examples using each technique.

JTD Keywords: Mechanical properties, Plasticity, Biomedical applications, Engine components


A. Mathur, P. Roca-Cusachs, O. M. Rossier, S. J. Wind, M. P. Sheetz, J. Hone, (2011). New approach for measuring protrusive forces in cells Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures , 29, (6), 06FA02

Juanola-Feliu, E., Colomer-Farrarons, J., Miribel-Catala, P., Samitier, J., Valls-Pasola, J., (2011). Challenges facing academic research in commercializing event-detector implantable devices for an in-vivo biomedical subcutaneous device for biomedical analysis Proceedings of the SPIE - The International Society for Optical Engineering VLSI Circuits and Systems V (ed. -----), SPIE - The International Society for Optical Engineering, USA (Prague, Czech Republic) 8067, 80670P

It is widely recognized that the welfare of the most advanced economies is at risk, and that the only way to tackle this situation is by controlling the knowledge economies and dealing with. To achieve this ambitious goal, we need to improve the performance of each dimension in the "knowledge triangle": education, research and innovation. Indeed, recent findings point to the importance of strategies of adding-value and marketing during R+D processes so as to bridge the gap between the laboratory and the market and so ensure the successful commercialization of new technology-based products. Moreover, in a global economy in which conventional manufacturing is dominated by developing economies, the future of industry in the most advanced economies must rely on its ability to innovate in those high-tech activities that can offer a differential added-value, rather than on improving existing technologies and products. It seems quite clear, therefore, that the combination of health (medicine) and nanotechnology in a new biomedical device is very capable of meeting these requisites. This work propose a generic CMOS Front-End Self-Powered In-Vivo Implantable Biomedical Device, based on a threeelectrode amperometric biosensor approach, capable of detecting threshold values for targeted concentrations of pathogens, ions, oxygen concentration, etc. Given the speed with which diabetes can spread, as diabetes is the fastest growing disease in the world, the nano-enabled implantable device for in-vivo biomedical analysis needs to be introduced into the global diabetes care devices market. In the case of glucose monitoring, the detection of a threshold decrease in the glucose level it is mandatory to avoid critic situations like the hypoglycemia. Although the case study reported in this paper is complex because it involves multiple organizations and sources of data, it contributes to extend experience to the best practices and models on nanotechnology applications and commercialization.

JTD Keywords: Biomedical equipment, Diseases, Nanotechnology


Punter-Villagrasa, J., Colomer-Farrarons, J., Miribel-Catala, P., Puig-Vidal, M., Samitier, J., (2011). Discrete to full custom ASIC solutions for bioelectronic applications Proceedings of the SPIE - The International Society for Optical Engineering VLSI Circuits and Systems V , SPIE - The International Society for Optical Engineering (Prague, Czech Republic) 8067, 80670Q

This paper presents a first approach on multi-pathogen detection system for portable point-of-care applications on discrete electronics field. The main interest is focused on the development of custom built electronic solutions for bioelectronics applications, from discrete devices to ASICS solutions.

JTD Keywords: Application specific integrated circuits, Biomedical electronics, Biosensors


Morgenstern, C., Schwaibold, M., Randerath, W., Bolz, A., Jané, R., (2010). Automatic non-invasive differentiation of obstructive and central hypopneas with nasal airflow compared to esophageal pressure Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 6142-6145

The differentiation of obstructive and central respiratory events is a major challenge in the diagnosis of sleep disordered breathing. Esophageal pressure (Pes) measurement is the gold-standard method to identify these events but its invasiveness deters its usage in clinical routine. Flattening patterns appear in the airflow signal during episodes of inspiratory flow limitation (IFL) and have been shown with invasive techniques to be useful to differentiate between central and obstructive hypopneas. In this study we present a new method for the automatic non-invasive differentiation of obstructive and central hypopneas solely with nasal airflow. An overall of 36 patients underwent full night polysomnography with systematic Pes recording and a total of 1069 hypopneas were manually scored by human experts to create a gold-standard annotation set. Features were automatically extracted from the nasal airflow signal to train and test our automatic classifier (Discriminant Analysis). Flattening patterns were non-invasively assessed in the airflow signal using spectral and time analysis. The automatic non-invasive classifier obtained a sensitivity of 0.71 and an accuracy of 0.69, similar to the results obtained with a manual non-invasive classification algorithm. Hence, flattening airflow patterns seem promising for the non-invasive differentiation of obstructive and central hypopneas.

JTD Keywords: Practical, Experimental/ biomedical measurement, Feature extraction, Flow measurement, Medical disorders, Medical signal processing, Patient diagnosis, Pneumodynamics, Pressure measurement, Signal classification, Sleep, Spectral analysis/ automatic noninvasive differentiation, Obstructive hypopnea, Central hypopnea, Inspiratory flow limitation, Nasal airflow, Esophageal pressure, Polysomnography, Feature extraction, Discriminant analysis, Spectral analysis


Leder, R. S., Schlotthauer, G., Penzel, T., Jané, R., (2010). The natural history of the sleep and respiratory engineering track at EMBC 1988 to 2010 Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 288-291

Sleep science and respiratory engineering as medical subspecialties and research areas grew up side-by-side with biomedical engineering. The formation of EMBS in the 1950's and the discovery of REM sleep in the 1950's led to parallel development and interaction of sleep and biomedical engineering in diagnostics and therapeutics.

JTD Keywords: Practical/ biomedical equipment, Biomedical measurement, Patient diagnosis, Patient monitoring, Patient treatment, Pneumodynamics, Sleep/ sleep engineering, Respiratory engineering, Automatic sleep analysis, Automatic sleep interpretation systems, Breathing, Biomedical, Engineering, Diagnostics, Therapeutics, REM sleep, Portable, Measurement, Ambulatory measurement, Monitoring


Torres, A., Sarlabous, L., Fiz, j A., Gea, J., Marti nez-Llorens, J. M., Morera, J., Jané, R., (2010). Noninvasive measurement of inspiratory muscle performance by means of diaphragm muscle mechanomyographic signals in COPD patients during an incremental load respiratory test Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 2493-2496

The study of mechanomyographic (MMG) signals of respiratory muscles is a promising noninvasive technique in order to evaluate the respiratory muscular effort and efficiency. In this work, the MMG signal of the diaphragm muscle it is evaluated in order to assess the respiratory muscular function in Chronic Obstructive Pulmonary Disease (COPD) patients. The MMG signals from left and right hemidiaphragm were acquired using two capacitive accelerometers placed on both left and right sides of the costal wall surface. The MMG signals and the inspiratory pressure signal were acquired while the COPD patients carried out an inspiratory load respiratory test. The population of study is composed of a group of 6 patients with severe COPD (FEV1>50% ref and DLCO<50% ref). We have found high positive correlation coefficients between the maximum inspiratory pressure (IPmax) developed in a respiratory cycle and different amplitude parameters of both left and right MMG signals (RMS, left: 0.68+/-0.11 - right: 0.69+/-0.12; Re nyi entropy, left: - 0.73+/-0.10 - right: 0.77+/-0.08; Multistate Lempel-Ziv, left: 0.73+/-0.17 - right: 0.74+/-0.08), and negative correlation between the Pmax and the maximum frequency of the MMG signal spectrum (left: -0.39+/-0.19 - right: -0.65+/-0.09). Furthermore, we found that the slope of the evolution of the MMG amplitude parameters, as the load increases during the respiratory test, has positive correlation with the %FEV1/FVC pulmonary function test parameter of the six COPD patients analyzed (RMS, left: 0.38 - right: 0.41; Re nyi entropy, left: 0.45 - right: 0.63; Multistate Lempel-Ziv, left: 0.39 - right: 0.64). These results suggest that the information provided by MMG signals could be used in order to evaluate the respiratory effort and the muscular efficiency in COPD patients.

JTD Keywords: Accelerometers, Biomechanics, Biomedical measurement, Diseases, Medical signal processing, Muscle


Mesquita, J., Fiz, J. A., Solà, J., Morera, J., Jané, R., (2010). Regular and non regular snore features as markers of SAHS Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 6138-6141

Sleep Apnea-Hypopnea Syndrome (SAHS) diagnosis is still done with an overnight multi-channel polysomnography. Several efforts are being made to study profoundly the snore mechanism and discover how it can provide an opportunity to diagnose the disease. This work introduces the concept of regular snores, defined as the ones produced in consecutive respiratory cycles, since they are produced in a regular way, without interruptions. We applied 2 thresholds (TH/sub adaptive/ and TH/sub median/) to the time interval between successive snores of 34 subjects in order to select regular snores from the whole all-night snore sequence. Afterwards, we studied the effectiveness that parameters, such as time interval between successive snores and the mean intensity of snores, have on distinguishing between different levels of SAHS severity (AHI (Apnea-Hypopnea Index)<5h/sup -1/, AHI<10 h/sup -1/, AHI<15h/sup -1/, AHI<30h/sup -1/). Results showed that TH/sub adaptive/ outperformed TH/sub median/ on selecting regular snores. Moreover, the outcome achieved with non-regular snores intensity features suggests that these carry key information on SAHS severity.

JTD Keywords: Practical, Experimental/ acoustic signal processing, Bioacoustics, Biomedical measurement, Diseases, Feature extraction, Medical signal processing, Patient diagnosis, Pneumodynamics, Sleep/ nonregular snore features, SAHS markers, Sleep apnea hypopnea syndrome, Overnight multichannel polysomnography, Snore mechanism


Arcentales, A., Giraldo, B. F., Caminal, P., Diaz, I., Benito, S., (2010). Spectral analysis of the RR series and the respiratory flow signal on patients in weaning process Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 2485-2488

A considerable number of patients in weaning process have problems to keep spontaneous breathing during the trial and after it. This study proposes to extract characteristic parameters of the RR series and respiratory flow signal according to the patients' condition in weaning test. Three groups of patients have been considered: 93 patients with successful trials (group S), 40 patients that failed to maintain spontaneous breathing (group F), and 21 patients who had successful weaning trials, but that had to be reintubated before 48 hours (group R). The characterization was performed using spectral analysis of the signals, through the power spectral density, cross power spectral density and Coherence method. The parameters were extracted on the three frequency bands (VLF, LF and HF), and the principal statistical differences between groups were obtained in bands of VLF and HF. The results show an accuracy of 76.9% in the classification of the groups S and F.

JTD Keywords: Biomedical measurement, Electrocardiography, Medical signal processing, Pneumodynamics, Spectral analysis, RR series, Coherence method, Cross power spectral density, Electrocardiography, Principal statistical differences, Respiratory flow signal, Spectral analysis, Spontaneous breathing, Weaning test


Aparicio, C., Salvagni, E., Werner, M., Engel, E., Pegueroles, M., Rodriguez-Cabello, C., Munoz, F., Planell, J. A., Gil, J., (2009). Biomimetic treatments on dental implants for immediate loading applications Journal of Medical Devices , 3, (2), 027555

Summary form only given. Commercially pure titanium (cp Ti) dental implants have been widely and successfully used with high rates of clinical success in normal situations. However, there is still a lack of reliable synthetic materials to be used either a) when immediate loading of the implant is desired or b) when bone presents compromised conditions due to trauma, infection, systemic disease and/or lack of significant bone volume. Our group has aimed the development of biomimetic strategies of surface modification to obtain metallic implants with osteostimulative capabilities. These surface modifications will provide implants with a rapid rate of newly-formed bone growth and with ossecoalescence, i.e., direct chemical contact with the surrounding tissues. Consequently, the biomimetically-modified implants will be reliably used on those more demanding clinical situations, cp Ti surfaces treated to obtain a combination of an optimal random surface topography (in the micro and nanolevels) with a chemical modification of the naturally-formed titania layer have been proved bioactive. These rough and bioactive surfaces nucleate and grow a homogeneous hydroxyapatite layer both in vitro and in vivo. They stimulate the osteoblasts differentiation and trigger a rapid bone formation that mechanically fixes implants under immediate-loading conditions. A simple process using silane chemistry has been proved specific, rapid, and reliable to covalently immobilize biomolecules on cp Ti surfaces. This methodology can be used to develop biofunc- tionalized implant surfaces with different or combined bioactivities. The biofunctional molecules can be biopolymers, proteins, growth factors, and synthetic peptides specifically designed to be attached to the surface. The bioactive properties of the molecules designed and used can be mineral growing and nucleation, osteoblast differentiation (bone regeneration), fibroblasts differentiation (biological sealing), antibiotic,... Specifically, we have obtained mechanically and thermochemically stable coatings made of recombinant elastin-like biopolymers. The biopolymers bear either a) the RODS peptide, which is a highly-specific cell-adhesion motif present in proteins of the extracellular matrix for different tissues including bone, or b) an acidic peptide sequence derived from statherin, a protein present in saliva with high affinity for calcium-phosphates and with a leading role in the remineralization processes of the hard tissues forming our teeth. Two different biomimetic strategies have been successfully developed combining topographical modification, inorganic treatments and/or biofunctionalization for improving bioactive integrative properties of cp Ti implants.

JTD Keywords: Biomedical materials, Bone, Cellular biophysics, Dentistry, Molecular biophysics, Prosthetics, Proteins, Surface treatment, Titanium


Casals, A., Frigola, M., Amat, J., (2009). Robotics, a valuable tool in surgery Revista Iberoamericana de Automatica e Informatica Industrial , 6, (1), 5-19

Continuous advances on diagnostic techniques based on medical images, as well as the incorporation of new techniques in surgical instruments are progressively changing the new surgical procedures. Also, new minimally invasive techniques, which are currently highly consolidated, have produced significant advances, both from the technological and from the surgical treatment perspectives. The limitations that the manual realization of surgical interventions implies, in what refers to precision and accessibility, can be tackled with the help of robotics. In the same way, sensor based robot control techniques are opening new possibilities for the introduction of more improvements in these procedures, either relying on teleoperation, in which the surgeon and the robot establish their best synergy to get the optimal results, or by means of the automation of some specific actions or tasks. In this article the effect of robotics in the evolution of surgical techniques is described. Starting with a review of the robotics application fields, the article continues analyzing the methods and technologies involved in the process of robotizing surgical procedures, as well as the surgeon-robot interaction systems.

JTD Keywords: Robotics, Medical Applications, Teleoperation, Biomedical Systems, Computer Aided Surgery, Human-Machine Interaction


Mills, C. A., Fernandez, Javier G., Errachid, A., Samitier, J., (2008). The use of high glass temperature polymers in the production of transparent, structured surfaces using nanoimprint lithography Microelectronic Engineering , 85, (9), 1897-1901

Polymers with high glass transition temperatures, fluorinated ethylene propylene copolymer (FEP) and poly(ethylene naphthalate) (PEN), have been used in imprint lithography as a protective support layer and as a secondary mould, to imprint superficial structures into a polymer with a lower glass transition temperature, namely poly(methyl methacrylate) (PMMA). As a support layer, FEP replaces fragile silicon based supports for the production of freestanding, structured sheets of PMMA, useful, for example, in biomedical applications where transmittance optical microscopy is required. Secondary PEN moulds, produced by imprinting using silicon-based primary moulds, have been used to transfer sub-micrometer tall structures to a freestanding PMMA sheet. Similarly, hole structures, with different dimensions, have been embossed in both sides of a PMMA sheet simultaneously.

JTD Keywords: Polymer engineering, Embossing, Nanoimprint lithography, Biomedical applications


Koch, M. A., Engel, E., Planell, J. A., Lacroix, D., (2008). Cell seeding and characterisation of PLA/glass composite scaffolds for bone tissue engineering Journal of Biomechanics 16th Congress, European Society of Biomechanics , Elsevier (Lucerne, Switzerland) 41, (Supplement 1), S162

In this study polymer-glass composite scaffolds were characterized by permeability and porosity, two important properties for the use in perfusion bioreactors. These scaffolds were seeded with osteoblast-like cells to assess the efficiency of the used bioreactor. The used PLA/glass composite scaffolds are adequate for the perfusion culture. The high porosity and pore interconnectivity allow an even cell distribution and incorporation of a high cell number. For optimisation of the perfusion bioreactor system, further research has to be dedicated to the cell seeding and culture.

JTD Keywords: Biomedical materials, Bioreactors, Bone, Cellular biophysics, Composite materials, Orthopaedics, Permeability, Polymers, Porosity, Porous materials, Tissue engineering


Rodriguez, Segui, Bucior, I., Burger, M. M., Samitier, J., Errachid, A., Fernàndez-Busquets, X., (2007). Application of a bio-QCM to study carbohydrates self-interaction in presence of calcium Transducers '07 & Eurosensors Xxi, Digest of Technical Papers 14th International Conference on Solid-State Sensors, Actuators and Microsystems , IEEE (Lyon, France) 1-2, 1995-1998

In the past years, the quartz crystal microbalance (QCM) has been successfully applied to follow interfacial physical chemistry phenomena in a label free and real time manner. However, carbohydrate self adhesion has only been addressed partially using this technique. Carbohydrates play an important role in cell adhesion, providing a highly versatile form of attachment, suitable for biologically relevant recognition events in the initial steps of adhesion. Here, we provide a QCM study of carbohydrates' self-recognition in the presence of calcium, based on a species-specific cell recognition model provided by marine sponges. Our results show a difference in adhesion kinetics when varying either the calcium concentration (with a constant carbohydrate concentration) or the carbohydrate concentration (with constant calcium concentration).

JTD Keywords: Biomedical materials, Calcium, Cellular biophysics, Microbalances, Porous materials, Quartz, Surface chemistry/ bio-QCM, Carbohydrates self-interaction, Quartz crystal microbalance, Interfacial physical chemistry phenomena, Carbohydrate self adhesion, Biologically relevant recognition events, Marine sponges, Adhesion kinetics, Calcium concentration, Carbohydrate concentration, Biosensors, Biomedical materials, Surface chemistry, Cellular biophysics