DONATE

Publications

by Keyword: egf

Zambarda, C, Gonzalez, CP, Schoenit, A, Veits, N, Schimmer, C, Jung, RM, Ollech, D, Christian, J, Roca-Cusachs, P, Trepat, X, Cavalcanti-Adam, EA, (2022). Epithelial cell cluster size affects force distribution in response to EGF-induced collective contractility European Journal Of Cell Biology 101, 151274

Several factors present in the extracellular environment regulate epithelial cell adhesion and dynamics. Among them, growth factors such as EGF, upon binding to their receptors at the cell surface, get internalized and directly activate the acto-myosin machinery. In this study we present the effects of EGF on the contractility of epithelial cancer cell colonies in confined geometry of different sizes. We show that the extent to which EGF triggers contractility scales with the cluster size and thus the number of cells. Moreover, the collective contractility results in a radial distribution of traction forces, which are dependent on integrin β1 peripheral adhesions and transmitted to neighboring cells through adherens junctions. Taken together, EGF-induced contractility acts on the mechanical crosstalk and linkage between the cell-cell and cell-matrix compartments, regulating collective responses.Copyright © 2022 The Authors. Published by Elsevier GmbH.. All rights reserved.

JTD Keywords: actin, activation, actomyosin, adherens junctions, adhesion, e-cadherin, egf, maturation, mechanical regulation, micropatterning, migration, traction forces, transduction, transmission, Actomyosin, Adherens junctions, Cell adhesion, Cell membrane, Collective contractility, Egf, Epidermal growth factor, Epidermal-growth-factor, Epithelial cells, Micropatterning, Myosins, Traction forces


Lopez-Canosa, A, Perez-Amodio, S, Engel, E, Castano, O, (2022). Microfluidic 3D Platform to Evaluate Endothelial Progenitor Cell Recruitment by Bioactive Materials Acta Biomaterialia 151, 264-277

Most of the conventional in vitro models to test biomaterial-driven vascularization are too simplistic to recapitulate the complex interactions taking place in the actual cell microenvironment, which results in a poor prediction of the in vivo performance of the material. However, during the last decade, cell culture models based on microfluidic technology have allowed attaining unprecedented levels of tissue biomimicry. In this work, we propose a microfluidic-based 3D model to evaluate the effect of bioactive biomaterials capable of releasing signalling cues (such as ions or proteins) in the recruitment of endogenous endothelial progenitor cells, a key step in the vascularization process. The usability of the platform is demonstrated using experimentally-validated finite element models and migration and proliferation studies with rat endothelial progenitor cells (rEPCs) and bone marrow-derived rat mesenchymal stromal cells (BM-rMSCs). As a proof of concept of biomaterial evaluation, the response of rEPCs to an electrospun composite made of polylactic acid with calcium phosphates nanoparticles (PLA+CaP) was compared in a co-culture microenvironment with BM-rMSC to a regular PLA control. Our results show a significantly higher rEPCs migration and the upregulation of several pro-inflammatory and proangiogenic proteins in the case of the PLA+CaP. The effects of osteopontin (OPN) on the rEPCs migratory response were also studied using this platform, suggesting its important role in mediating their recruitment to a calcium-rich microenvironment. This new tool could be applied to screen the capacity of a variety of bioactive scaffolds to induce vascularization and accelerate the preclinical testing of biomaterials. STATEMENT OF SIGNIFICANCE: : For many years researchers have used neovascularization models to evaluate bioactive biomaterials both in vitro, with low predictive results due to their poor biomimicry and minimal control over cell cues such as spatiotemporal biomolecule signaling, and in vivo models, presenting drawbacks such as being highly costly, time-consuming, poor human extrapolation, and ethically controversial. We describe a compact microphysiological platform designed for the evaluation of proangiogenesis in biomaterials through the quantification of the level of sprouting in a mimicked endothelium able to react to gradients of biomaterial-released signals in a fibrin-based extracellular matrix. This model is a useful tool to perform preclinical trustworthy studies in tissue regeneration and to better understand the different elements involved in the complex process of vascularization.Copyright © 2022. Published by Elsevier Ltd.

JTD Keywords: angiogenesis, bioactive materials, bone regeneration, bone-formation, calcium-phosphate, extracellular calcium, in-vitro, interstitial flow, ion release, microfluidic model, signalling gradient, substitutes, tissue engineering, vascularization, vegf, Ion release, Mesenchymal stem-cells, Tissue engineering, Vascularization


Torp, N, Israelsen, M, Madsen, B, Lutz, P, Jansen, C, Strassburg, C, Mortensen, C, Knudsen, AW, Sorensen, GL, Holmskov, U, Schlosser, A, Thiele, M, Trebicka, J, Krag, A, (2021). Level of MFAP4 in ascites independently predicts 1-year transplant-free survival in patients with cirrhosis Jhep Rep 3, 100287

Background & Aims: Prognostic models of cirrhosis underestimate disease severity for patients with cirrhosis and ascites. Microfibrillar-associated protein 4 (MFAP4) is an extracellular matrix protein linked to hepatic neoangiogenesis and fibrogenesis. We investigated ascites MFAP4 as a predictor of transplant-free survival in patients with cirrhosis and ascites. Methods: A dual-centre observational study of patients with cirrhosis and ascites recruited consecutively in relation to a paracentesis was carried out. Patients were followed up for 1 year, until death or liver transplantation (LTx). Ascites MFAP4 was tested with the model for end-stage liver disease (MELD-Na), CLIF Consortium Acute Decompensation (CLIF-C AD), and Child-Pugh score in Cox regression models. Results: Ninety-three patients requiring paracentesis were included. Median ascites MFAP4 was 29.7 U/L [22.3–41.3], and MELD-Na was 19 [16–23]. A low MELD-Na score (<20) was observed in 49 patients (53%). During follow-up, 20 patients died (22%), and 6 received LTx (6%). High ascites MFAP4 (>29.7 U/L) was associated with 1-year transplant-free survival (p = 0.002). In Cox regression, ascites MFAP4 and MELD-Na independently predicted 1-year transplant-free survival (hazard ratio [HR] = 0.97, p = 0.03, and HR = 1.08, p = 0.01, respectively). Ascites MFAP4 and CLIF-C AD also predicted survival independently (HR = 0.96, p = 0.02, and HR = 1.05, p = 0.03, respectively), whereas only ascites MFAP4 did, controlling for the Child-Pugh score (HR = 0.97, p = 0.03, and HR = 1.18, p = 0.16, respectively). For patients with MELD-Na <20, ascites MFAP4 but not ascites protein predicted 1-year transplant-free survival (HR 0.91, p = 0.02, and HR = 0.94, p = 0.17, respectively). Conclusions: Ascites MFAP4 predicts 1-year transplant-free survival in patients with cirrhosis and ascites. In patients with low MELD-Na scores, ascites MFAP4, but not total ascites protein, significantly predicted 1-year transplant-free survival. Lay summary: Patients with cirrhosis who have fluid in the abdomen, ascites, are at an increased risk of death and in need for liver transplantation. Our study identified patients with ascites and a poor prognosis by measuring microfibrillar associated protein 4 (MFAP4), a protein present in the abdominal fluid. Patients with low levels of the MFAP4 protein are at particularly increased risk of death or liver transplantation, suggesting that clinical care should be intensified in this group of patients. © 2021 The Authors

JTD Keywords: biomarker, clif-c ad, clif consortium acute decompensation, cps, child-pugh score, crp, c-reactive protein, ct, computed tomography, decompensated, ecm, extracellular matrix, fibrosis, fluid protein, gfr, glomerular filtration rate, hr, hazard ratio, inr, internationalised normal ratio, liver disease, liver-cirrhosis, ltx, liver transplantation, markers, meld-na, model for end-stage liver disease, mfap4, microfibrillar associated protein 4, mortality, nash, non-alcoholic steatohepatitis, natural-history, prognosis, risk-factors, sbp, spontaneous bacterial peritonitis, scores, stage, Biomarker, Decompensated, Egfr, estimated gfr, Fibrosis, Liver disease, Mortality, Prognosis, Spontaneous bacterial peritonitis


Jurado, M, Castano, O, Zorzano, A, (2021). Stochastic modulation evidences a transitory EGF-Ras-ERK MAPK activity induced by PRMT5 Computers In Biology And Medicine 133, 104339

The extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway involves a three-step cascade of kinases that transduce signals and promote processes such as cell growth, development, and apoptosis. An aberrant response of this pathway is related to the proliferation of cell diseases and tumors. By using simulation modeling, we document that the protein arginine methyltransferase 5 (PRMT5) modulates the MAPK pathway and thus avoids an aberrant behavior. PRMT5 methylates the Raf kinase, reducing its catalytic activity and thereby, reducing the activation of ERK in time and amplitude. Two minimal computational models of the epidermal growth factor (EGF)-Ras-ERK MAPK pathway influenced by PRMT5 were proposed: a first model in which PRMT5 is activated by EGF and a second one in which PRMT5 is stimulated by the cascade response. The reported results show that PRMT5 reduces the time duration and the expression of the activated ERK in both cases, but only in the first model PRMT5 limits the EGF range that generates an ERK activation. Based on our data, we propose the protein PRMT5 as a regulatory factor to develop strategies to fight against an excessive activity of the MAPK pathway, which could be of use in chronic diseases and cancer.

JTD Keywords: cancer, cell response modulation, computational model, egf-ras-erk signaling route, mapk pathway, methylation, Arginine methyltransferase 5, Cancer, Cell response modulation, Colorectal-cancer, Computational model, Egf-ras-erk signaling route, Epidermal-growth-factor, Factor receptor, Histone h3, Kinase cascade, Mapk pathway, Methylation, Negative-feedback, Pc12 cells, Prmt5, Protein, Signal-transduction


Hino, N., Rossetti, L., Marín-Llauradó, A., Aoki, K., Trepat, X., Matsuda, M., Hirashima, T., (2020). ERK-mediated mechanochemical waves direct collective cell polarization Developmental Cell 53, (6), 646-660.e8

During collective migration of epithelial cells, the migration direction is aligned over a tissue-scale expanse. Although the collective cell migration is known to be directed by mechanical forces transmitted via cell-cell junctions, it remains elusive how the intercellular force transmission is coordinated with intracellular biochemical signaling to achieve collective movements. Here, we show that intercellular coupling of extracellular signal-regulated kinase (ERK)-mediated mechanochemical feedback yields long-distance transmission of guidance cues. Mechanical stretch activates ERK through epidermal growth factor receptor (EGFR) activation, and ERK activation triggers cell contraction. The contraction of the activated cell pulls neighboring cells, evoking another round of ERK activation and contraction in the neighbors. Furthermore, anisotropic contraction based on front-rear polarization guarantees unidirectional propagation of ERK activation, and in turn, the ERK activation waves direct multicellular alignment of the polarity, leading to long-range ordered migration. Our findings reveal that mechanical forces mediate intercellular signaling underlying sustained transmission of guidance cues for collective cell migration.

JTD Keywords: Collective cell migration, EGFR, ERK/MAPK, FRET, Front-rear polarity, Intercellular signal transfer, Mathematical model, Mechanochemical feedback, Mechanotransduction, wave propagation