DONATE

Publications

by Keyword: Monolayer culture

Pérez-González, C, Ceada, G, Matejcic, M, Trepat, X, (2022). Digesting the mechanobiology of the intestinal epithelium Current Opinion In Genetics & Development 72, 82-90

The dizzying life of the homeostatic intestinal epithelium is governed by a complex interplay between fate, form, force and function. This interplay is beginning to be elucidated thanks to advances in intravital and ex vivo imaging, organoid culture, and biomechanical measurements. Recent discoveries have untangled the intricate organization of the forces that fold the monolayer into crypts and villi, compartmentalize cell types, direct cell migration, and regulate cell identity, proliferation and death. These findings revealed that the dynamic equilibrium of the healthy intestinal epithelium relies on its ability to precisely coordinate tractions and tensions in space and time. In this review, we discuss recent findings in intestinal mechanobiology, and highlight some of the many fascinating questions that remain to be addressed in this emerging field.Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved.

JTD Keywords: crypt fission, designer matrices, differentiation, growth, gut, migration, model, scaffold, tissue mechanics, Cell migration, Cell proliferation, Ex vivo study, Human tissue, Intestine epithelium, Monolayer culture, Organoid, Review, Stem-cell, Tension, Traction therapy


Velasco-Mallorqui, F, Rodriguez-Comas, J, Ramon-Azcon, J, (2021). Cellulose-based scaffolds enhance pseudoislets formation and functionality Biofabrication 13, 35044

In vitro research for the study of type 2 diabetes (T2D) is frequently limited by the availability of a functional model for islets of Langerhans. To overcome the limitations of obtaining pancreatic islets from different sources, such as animal models or human donors, immortalized cell lines as the insulin-producing INS1E beta-cells have appeared as a valid alternative to model insulin-related diseases. However, immortalized cell lines are mainly used in flat surfaces or monolayer distributions, not resembling the spheroid-like architecture of the pancreatic islets. To generate islet-like structures, the use of scaffolds appeared as a valid tool to promote cell aggregations. Traditionally-used hydrogel encapsulation methods do not accomplish all the requisites for pancreatic tissue engineering, as its poor nutrient and oxygen diffusion induces cell death. Here, we use cryogelation technology to develop a more resemblance scaffold with the mechanical and physical properties needed to engineer pancreatic tissue. This study shows that carboxymethyl cellulose (CMC) cryogels prompted cells to generate beta-cell clusters in comparison to gelatin-based scaffolds, that did not induce this cell organization. Moreover, the high porosity achieved with CMC cryogels allowed us to create specific range pseudoislets. Pseudoislets formed within CMC-scaffolds showed cell viability for up to 7 d and a better response to glucose over conventional monolayer cultures. Overall, our results demonstrate that CMC-scaffolds can be used to control the organization and function of insulin-producing beta-cells, representing a suitable technique to generate beta-cell clusters to study pancreatic islet function.

JTD Keywords: biomaterial, cryogel, pancreatic islets, scaffold, tissue engineering, ?-cell, Architecture, Beta-cell, Beta-cell heterogeneity, Biomaterial, Carboxymethyl cellulose, Cell culture, Cell death, Cell engineering, Cell organization, Cells, Cellulose, Cryogel, Cryogels, Cytoarchitecture, Delivery, Encapsulation methods, Gelation, Gene-expression, Immortalized cells, Insulin, Insulin secretory responses, Islets of langerhans, Mechanical and physical properties, Monolayer culture, Monolayers, Pancreatic islets, Pancreatic tissue, Pancreatic-islets, Proliferation, Scaffold, Scaffolds, Scaffolds (biology), Size, Tissue, Tissue engineering, Β-cell