DONATE

Publications

by Keyword: Phase-behavior

Valenti, S, Arioli, M, Jamett, A, Tamarit, JL, Puiggalí, J, Macovez, R, (2023). Amorphous solid dispersions of curcumin in a poly(ester amide): Antiplasticizing effect on the glass transition and macromolecular relaxation dynamics, and controlled release International Journal Of Pharmaceutics 644, 123333

In order to exploit the pharmacological potential of natural bioactive molecules with low water solubility, such as curcumin, it is necessary to develop formulations, such as amorphous polymer dispersions, which allow a constant release rate and at the same time avoid possible toxicity effects of the crystalline form of the molecule under scrutiny. In this study, polymer dispersions of curcumin were obtained in PADAS, a biodegradable semicrystalline copolymer based on 1,12-dodecanediol, sebacic acid and alanine. The dispersions were fully characterized by means of differential scanning calorimetry and broadband dielectric spectroscopy, and the drug release profile was measured in a simulated body fluid. Amorphous homogeneous binary dispersions were obtained for curcumin mass fraction between 30 and 50%. Curcumin has significantly higher glass transition temperature Tg (≈ 347 K) than the polymer matrix (≈274-277 K depending on the molecular weight), and dispersions displayed Tg's intermediate between those of the pure amorphous components, implying that curcumin acts as an effective antiplasticizer for PADAS. Dielectric spectroscopy was employed to assess the relaxation dynamics of the binary dispersion with 30 wt% curcumin, as well as that of each (amorphous) component separately. The binary dispersion was characterized by a single structural relaxation, a single Johari-Goldstein process, and two local intramolecular processes, one for each component. Interestingly, the latter processes scaled with the Tg of the sample, indicating that they are viscosity-sensitive. In addition, both the pristine polymer and the dispersion exhibited an interfacial Maxwell-Wagner relaxation, likely due to spatial heterogeneities associated with phase disproportionation in this polymer. The release of curcumin from the dispersion in a simulated body fluid followed a Fickian diffusion profile, and 51% of the initial curcumin content was released in 48 h.Copyright © 2023. Published by Elsevier B.V.

JTD Keywords: antioxidant, bioavailability, dielectric spectroscopy, domain havriliak-negami, glass transition temperature, kinetic stability, molecular mobility, nm pores, phase-behavior, physical stability, release kinetics, temperature, thermodynamic quantities, time, Amorphous formulations, Dielectric spectroscopy, Glass transition temperature, Kinetic stability, Kohlrausch-williams-watts, Molecular mobility, Release kinetics


Blanco-Fernandez, G, Blanco-Fernandez, B, Fernandez-Ferreiro, A, Otero-Espinar, FJ, (2023). Lipidic lyotropic liquid crystals: Insights on biomedical applications Advances In Colloid And Interface Science 313, 102867

Liquid crystals (LCs) possess unique physicochemical properties, translatable into a wide range of applications. To date, lipidic lyotropic LCs (LLCs) have been extensively explored in drug delivery and imaging owing to the capability to encapsulate and release payloads with different characteristics. The current landscape of lipidic LLCs in biomedical applications is provided in this review. Initially, the main properties, types, methods of fabrication and applications of LCs are showcased. Then, a comprehensive discussion of the main biomedical applications of lipidic LLCs accordingly to the application (drug and biomacromolecule delivery, tissue engi-neering and molecular imaging) and route of administration is examined. Further discussion of the main limi-tations and perspectives of lipidic LLCs in biomedical applications are also provided.Statement of significance: Liquid crystals (LCs) are those systems between a solid and liquid state that possess unique morphological and physicochemical properties, translatable into a wide range of biomedical applications. A short description of the properties of LCs, their types and manufacturing procedures is given to serve as a background to the topic. Then, the latest and most innovative research in the field of biomedicine is examined, specifically the areas of drug and biomacromolecule delivery, tissue engineering and molecular imaging. Finally, prospects of LCs in biomedicine are discussed to show future trends and perspectives that might be utilized. This article is an ampliation, improvement and actualization of our previous short forum article "Bringing lipidic lyotropic liquid crystal technology into biomedicine" published in TIPS.

JTD Keywords: drug delivery, glycerol monooleate, imaging, liquid crystals, Cancer, Drug delivery, Drug-delivery-systems, Glycerol monooleate, Imaging, In-situ, Liquid crystals, Nano-carriers, Nanoparticles, Phase-behavior, Stratum-corneum, Sustained-release, Tissue engineering, Vegetable-oil, Water