DONATE

Publications

by Keyword: Liquid crystals

Blanco-Fernandez, G, Blanco-Fernandez, B, Fernandez-Ferreiro, A, Otero-Espinar, FJ, (2023). Lipidic lyotropic liquid crystals: Insights on biomedical applications Advances In Colloid And Interface Science 313, 102867

Liquid crystals (LCs) possess unique physicochemical properties, translatable into a wide range of applications. To date, lipidic lyotropic LCs (LLCs) have been extensively explored in drug delivery and imaging owing to the capability to encapsulate and release payloads with different characteristics. The current landscape of lipidic LLCs in biomedical applications is provided in this review. Initially, the main properties, types, methods of fabrication and applications of LCs are showcased. Then, a comprehensive discussion of the main biomedical applications of lipidic LLCs accordingly to the application (drug and biomacromolecule delivery, tissue engi-neering and molecular imaging) and route of administration is examined. Further discussion of the main limi-tations and perspectives of lipidic LLCs in biomedical applications are also provided.Statement of significance: Liquid crystals (LCs) are those systems between a solid and liquid state that possess unique morphological and physicochemical properties, translatable into a wide range of biomedical applications. A short description of the properties of LCs, their types and manufacturing procedures is given to serve as a background to the topic. Then, the latest and most innovative research in the field of biomedicine is examined, specifically the areas of drug and biomacromolecule delivery, tissue engineering and molecular imaging. Finally, prospects of LCs in biomedicine are discussed to show future trends and perspectives that might be utilized. This article is an ampliation, improvement and actualization of our previous short forum article "Bringing lipidic lyotropic liquid crystal technology into biomedicine" published in TIPS.

JTD Keywords: drug delivery, glycerol monooleate, imaging, liquid crystals, Cancer, Drug delivery, Drug-delivery-systems, Glycerol monooleate, Imaging, In-situ, Liquid crystals, Nano-carriers, Nanoparticles, Phase-behavior, Stratum-corneum, Sustained-release, Tissue engineering, Vegetable-oil, Water


Blanco-Fernandez, G, Blanco-Fernandez, B, Fernández-Ferreiro, A, Otero-Espinar, F, (2023). Bringing lipidic lyotropic liquid crystal technology into biomedicine Trends In Pharmacological Sciences 44, 7-10

Liquid crystals (LCs), discovered more than 130 years ago, are now emerging in the field of biomedicine. This article highlights the recent uses of lipid lyotropic LCs in therapeutics delivery, imaging, and tissue engineering and invites the scientific community to continue exploring the design of more complex LCs. © 2022 Elsevier Ltd

JTD Keywords: biomedicine, drug delivery, glycerol monooleate, imaging, tissue engineering, Biomedicine, Drug delivery, Glycerol monooleate, Imaging, tissue engineering, Lyotropic liquid crystals


Olate-Moya, F., Arens, L., Wilhelm, M., Mateos-Timoneda, M. A., Engel, E., Palza, H., (2020). Chondroinductive alginate-based hydrogels having graphene oxide for 3D printed scaffold fabrication ACS Applied Materials and Interfaces 12, (4), 4343-4357

Scaffolds based on bioconjugated hydrogels are attractive for tissue engineering because they can partly mimic human tissue characteristics. For example, they can further increase their bioactivity with cells. However, most of the hydrogels present problems related to their processability, consequently limiting their use in 3D printing to produce tailor-made scaffolds. The goal of this work is to develop bioconjugated hydrogel nanocomposite inks for 3D printed scaffold fabrication through a micro-extrusion process having improved both biocompatibility and processability. The hydrogel is based on a photocrosslinkable alginate bioconjugated with both gelatin and chondroitin sulfate in order to mimic the cartilage extracellular matrix, while the nanofiller is based on graphene oxide to enhance the printability and cell proliferation. Our results show that the incorporation of graphene oxide into the hydrogel inks considerably improved the shape fidelity and resolution of 3D printed scaffolds because of a faster viscosity recovery post extrusion of the ink. Moreover, the nanocomposite inks produce anisotropic threads after the 3D printing process because of the templating of the graphene oxide liquid crystal. The in vitro proliferation assay of human adipose tissue-derived mesenchymal stem cells (hADMSCs) shows that bioconjugated scaffolds present higher cell proliferation than pure alginate, with the nanocomposites presenting the highest values at long times. Live/Dead assay otherwise displays full viability of hADMSCs adhered on the different scaffolds at day 7. Notably, the scaffolds produced with nanocomposite hydrogel inks were able to guide the cell proliferation following the direction of the 3D printed threads. In addition, the bioconjugated alginate hydrogel matrix induced chondrogenic differentiation without exogenous pro-chondrogenesis factors as concluded from immunostaining after 28 days of culture. This high cytocompatibility and chondroinductive effect toward hADMSCs, together with the improved printability and anisotropic structures, makes these nanocomposite hydrogel inks a promising candidate for cartilage tissue engineering based on 3D printing.

JTD Keywords: 3D printing, Chondrogenesis, Graphene oxide, Hydrogels, Liquid crystals