by Keyword: Polylactide
Valenti, S, del Valle, LJ, Romanini, M, Mitjana, M, Puiggali, J, Tamarit, JL, Macovez, R, (2022). Drug-Biopolymer Dispersions: Morphology- and Temperature- Dependent (Anti)Plasticizer Effect of the Drug and Component-Specific Johari–Goldstein Relaxations International Journal Of Molecular Sciences 23, 2456
Amorphous molecule-macromolecule mixtures are ubiquitous in polymer technology and are one of the most studied routes for the development of amorphous drug formulations. For these applications it is crucial to understand how the preparation method affects the properties of the mixtures. Here, we employ differential scanning calorimetry and broadband dielectric spectroscopy to investigate dispersions of a small-molecule drug (the Nordazepam anxiolytic) in biodegradable polylactide, both in the form of solvent-cast films and electrospun microfibres. We show that the dispersion of the same small-molecule compound can have opposite (plasticizing or antiplasticizing) effects on the segmental mobility of a biopolymer depending on preparation method, temperature, and polymer enantiomerism. We compare two different chiral forms of the polymer, namely, the enantiomeric pure, semicrystalline L-polymer (PLLA), and a random, fully amorphous copolymer containing both L and D monomers (PDLLA), both of which have lower glass transition temperature (Tg) than the drug. While the drug has a weak antiplasticizing effect on the films, consistent with its higher Tg, we find that it actually acts as a plasticizer for the PLLA microfibres, reducing their Tg by as much as 14 K at 30%-weight drug loading, namely, to a value that is lower than the Tg of fully amorphous films. The structural relaxation time of the samples similarly depends on chemical composition and morphology. Most mixtures displayed a single structural relaxation, as expected for homogeneous samples. In the PLLA microfibres, the presence of crystalline domains increases the structural relaxation time of the amorphous fraction, while the presence of the drug lowers the structural relaxation time of the (partially stretched) chains in the microfibres, increasing chain mobility well above that of the fully amorphous polymer matrix. Even fully amorphous homogeneous mixtures exhibit two distinct Johari–Goldstein relaxation processes, one for each chemical component. Our findings have important implications for the interpretation of the Johari–Goldstein process as well as for the physical stability and mechanical properties of microfibres with small-molecule additives.
JTD Keywords: amorphous pharmaceuticals, beta-relaxation, constant loss, crystallization, dielectric spectroscopy, dynamics, formulation morphology, glass transition, molecular mobility, nanofibers, polylactide, polymer enantiomerism, secondary relaxations, valium metabolite, viscous-liquids, Amorphous pharmaceuticals, Glass-transition, Secondary relaxations
Kadkhodaie-Elyaderani, A, de Lama-Odría, MD, Rivas, M, Martínez-Rovira, I, Yousef, I, Puiggalí, J, del Valle, LJ, (2022). Medicated Scaffolds Prepared with Hydroxyapatite/Streptomycin Nanoparticles Encapsulated into Polylactide Microfibers International Journal Of Molecular Sciences 23, 1282
The preparation, characterization, and controlled release of hydroxyapatite (HAp) nanopar-ticles loaded with streptomycin (STR) was studied. These nanoparticles are highly appropriate for the treatment of bacterial infections and are also promising for the treatment of cancer cells. The analyses involved scanning electron microscopy, dynamic light scattering (DLS) and Z-potential measurements, as well as infrared spectroscopy and X-ray diffraction. Both amorphous (ACP) and crystalline (cHAp) hydroxyapatite nanoparticles were considered since they differ in their release behavior (faster and slower for amorphous and crystalline particles, respectively). The encapsulated nanoparticles were finally incorporated into biodegradable and biocompatible polylactide (PLA) scaf-folds. The STR load was carried out following different pathways during the synthesis/precipitation of the nanoparticles (i.e., nucleation steps) and also by simple adsorption once the nanoparticles were formed. The loaded nanoparticles were biocompatible according to the study of the cytotoxicity of extracts using different cell lines. FTIR microspectroscopy was also employed to evaluate the cytotoxic effect on cancer cell lines of nanoparticles internalized by endocytosis. The results were promising when amorphous nanoparticles were employed. The nanoparticles loaded with STR increased their size and changed their superficial negative charge to positive. The nanoparticles’ crystallinity decreased, with the consequence that their crystal sizes reduced, when STR was incorporated into their structure. STR maintained its antibacterial activity, although it was reduced during the adsorption into the nanoparticles formed. The STR release was faster from the amorphous ACP nanoparticles and slower from the crystalline cHAp nanoparticles. However, in both cases, the STR release was slower when incorporated in calcium and phosphate during the synthesis. The biocompatibility of these nanoparticles was assayed by two approximations. When extracts from the nanoparticles were evaluated in cultures of cell lines, no cytotoxic damage was observed at concen-trations of less than 10 mg/mL. This demonstrated their biocompatibility. Another experiment using FTIR microspectroscopy evaluated the cytotoxic effect of nanoparticles internalized by endocytosis in cancer cells. The results demonstrated slight damage to the biomacromolecules when the cells were treated with ACP nanoparticles. Both ACP and cHAp nanoparticles were efficiently encapsulated in PLA electrospun matrices, providing functionality and bioactive properties. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
JTD Keywords: antibiotics, antimicrobial activity, behavior, cytotoxicity, delivery, drug, drug delivery, hydroxyapatite nanoparticles, in-vitro, mechanisms, mitochondria, polylactide, release, streptomycin, Antimicrobial activity, Cancer stem-cells, Cytotoxicity, Drug delivery, Hydroxyapatite nanoparticles, Polylactide, Streptomycin
Andrian, T, Pujals, S, Albertazzi, L, (2021). Quantifying the effect of PEG architecture on nanoparticle ligand availability using DNA-PAINT Nanoscale Advances 3, 6876-6881
The importance of PEG architecture on nanoparticle (NP) functionality is known but still difficult to investigate, especially at a single particle level. Here, we apply DNA Point Accumulation for Imaging in Nanoscale Topography (DNA-PAINT), a super-resolution microscopy (SRM) technique, to study the surface functionality in poly(lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) NPs with different PEG structures. We demonstrated how the length of the PEG spacer can influence the accessibility of surface chemical functionality, highlighting the importance of SRM techniques to support the rational design of functionalized NPs.
JTD Keywords: chain-length, density, plga, surface, systems, Chain-length, Density, Dna, Microscopy technique, Nanoparticles, Nanoscale topography, Paint, Peg spacers, Plga, Poly lactide-co-glycolide, Poly-lactide-co-glycolide, Polyethylene glycols, Polylactide-co-glycolide, Single-particle, Super-resolution microscopy, Superresolution microscopy, Surface, Surface chemicals, Surface functionalities, Systems
Chausse, V, Schieber, R, Raymond, Y, Ségry, B, Sabaté, R, Kolandaivelu, K, Ginebra, MP, Pegueroles, M, (2021). Solvent-cast direct-writing as a fabrication strategy for radiopaque stents Additive Manufacturing 48, 102392
JTD Keywords: biocompatibility, bioresorbable stents, degradation, mechanical-properties, poly(epsilon-caprolactone), poly-l-lactic acid, polylactide, radiopacity, thermogel, x-ray imaging, Barium sulfate, Biocompatibility, Bioresorbable, Bioresorbable scaffolds, Bioresorbable stent, Bioresorbable stents, Blood vessels, Computerized tomography, Controlled drug delivery, Coronary heart disease, Direct-writing, Endothelial cells, Fabrication strategies, Injection molding, Lactic acid, Poly-l-lactic acid, Poly-l-lactic acids, Radiopacity, Scaffolds (biology), Solvent cast, Solvent-cast direct-writing, Solvents, Stents, Struts, Sulfur compounds, Targeted drug delivery, X-ray imaging
Keridou, I., Cailloux, J., Martínez, J. C., Santana, O., Maspoch, M. L., Puiggalí, J., Franco, L., (2020). Biphasic polylactide/polyamide 6,10 blends: Influence of composition on polyamide structure and polyester crystallization Polymer 202, 122676
Blends with different ratios of polylactide and polyamide 6,10 (PA610) have been prepared by melt-mixing using a Brabender mixer equipment. Previously, a rheologically modified polylactide (PLAREx) was obtained through reactive extrusion using a multifunctional epoxide agent. It was expected that unreacted epoxy groups of PLAREx were able to improve the compatibility between the two polymers. SEM observations revealed a logical dependence of the morphology of immiscible phases with composition, and more interestingly a co-continuity at relatively low PA content (around 50%) was detected. This result contrasts with previous observations performed with non-modified PLA. Confined PA domains increased with the PA content and hardly crystallized at the typical crystallization temperature of the pure PA (195 °C). Synchrotron X-ray diffraction studies indicated that a PA crystallization at a lower temperature close to 120 °C was enhanced and led to a pseudohexagonal γ phase that differs from the characteristic layered structure of PA610. SAXS data revealed also that well differentiated lamellar entities could be assigned at both immiscible polymer phases. Clear differences were observed in the spherulitic morphologies attained under isothermal melt crystallization experiments. Results indicated that the texture of PLAREx spherulites was modified by the presence of PA. Compatibilization of PA molecules on the crystal lamellar boundaries of PLAREx led to an enhancement of the lamellar twisting frequency. Optical microscopy results also indicated that the crystal growth rate of PLAREx increased by the incorporation of PA, but in contrast this had an adverse effect on the nucleation process.
JTD Keywords: Crystal growth rate, Epoxy modified polylactide, Nucleation, Polyamide 6,10, Polyamide crystalline structure, Polyamide/polylactide blend morphology, Thermal properties