by Keyword: Stimuli-responsive
Duro-Castano, A, Rodríguez-Arco, L, Ruiz-Pérez, L, De Pace, C, Marchello, G, Noble-Jesus, C, Battaglia, G, (2021). One-Pot Synthesis of Oxidation-Sensitive Supramolecular Gels and Vesicles Biomacromolecules 22, 5052-5064
Polypeptide-based nanoparticles offer unique advantages from a nanomedicine perspective such as biocompatibility, biodegradability, and stimuli-responsive properties to (patho)physiological conditions. Conventionally, self-assembled polypeptide nanostructures are prepared by first synthesizing their constituent amphiphilic polypeptides followed by postpolymerization self-assembly. Herein, we describe the one-pot synthesis of oxidation-sensitive supramolecular micelles and vesicles. This was achieved by polymerization-induced self-assembly (PISA) of the N-carboxyanhydride (NCA) precursor of methionine using poly(ethylene oxide) as a stabilizing and hydrophilic block in dimethyl sulfoxide (DMSO). By adjusting the hydrophobic block length and concentration, we obtained a range of morphologies from spherical to wormlike micelles, to vesicles. Remarkably, the secondary structure of polypeptides greatly influenced the final morphology of the assemblies. Surprisingly, wormlike micellar morphologies were obtained for a wide range of methionine block lengths and solid contents, with spherical micelles restricted to very short hydrophobic lengths. Wormlike micelles further assembled into oxidation-sensitive, self-standing gels in the reaction pot. Both vesicles and wormlike micelles obtained using this method demonstrated to degrade under controlled oxidant conditions, which would expand their biomedical applications such as in sustained drug release or as cellular scaffolds in tissue engineering.
JTD Keywords: alpha-amino-acid, hydrogels, leuchs anhydrides, platform, polypeptides, transformation, triggered cargo release, Amino acids, Amphiphilics, Biocompatibility, Biodegradability, Block lengths, Controlled drug delivery, Dimethyl sulfoxide, Ethylene, Gels, Hydrophobicity, Medical nanotechnology, Methionine, Micelles, Morphology, One-pot synthesis, Organic solvents, Oxidation, Physiological condition, Polyethylene oxides, Post-polymerization, Ring-opening polymerization, Scaffolds (biology), Self assembly, Stimuli-responsive properties, Supramolecular chemistry, Supramolecular gels, Supramolecular micelles, Wormlike micelle
Rial-Hermida, MI, Rey-Rico, A, Blanco-Fernandez, B, Carballo-Pedrares, N, Byrne, EM, Mano, JF, (2021). Recent Progress on Polysaccharide-Based Hydrogels for Controlled Delivery of Therapeutic Biomolecules Acs Biomaterials Science & Engineering 7, 4102-4127
A plethora of applications using polysaccharides have been developed in recent years due to their availability as well as their frequent nontoxicity and biodegradability. These polymers are usually obtained from renewable sources or are byproducts of industrial processes, thus, their use is collaborative in waste management and shows promise for an enhanced sustainable circular economy. Regarding the development of novel delivery systems for biotherapeutics, the potential of polysaccharides is attractive for the previously mentioned properties and also for the possibility of chemical modification of their structures, their ability to form matrixes of diverse architectures and mechanical properties, as well as for their ability to maintain bioactivity following incorporation of the biomolecules into the matrix. Biotherapeutics, such as proteins, growth factors, gene vectors, enzymes, hormones, DNA/RNA, and antibodies are currently in use as major therapeutics in a wide range of pathologies. In the present review, we summarize recent progress in the development of polysaccharide-based hydrogels of diverse nature, alone or in combination with other polymers or drug delivery systems, which have been implemented in the delivery of biotherapeutics in the pharmaceutical and biomedical fields. © 2021 American Chemical Society.
JTD Keywords: biodegradable dextran hydrogels, biotherapeutics, bone morphogenetic protein-2, carrageenan-based hydrogels, chitosan-based hydrogels, controlled delivery, controlled-release, cross-linked hydrogels, growth-factor delivery, hydrogels, in-vitro characterization, polysaccharides, self-healing hydrogel, stimuli-responsiveness, tissue engineering, Antibodies, Bioactivity, Biodegradability, Biomedical fields, Biomolecules, Biotherapeutics, Chemical modification, Circular economy, Controlled delivery, Controlled drug delivery, Delivery systems, Drug delivery system, Functional polymers, Hyaluronic-acid hydrogels, Hydrogels, Industrial processs, Polysaccharides, Recent progress, Renewable sources, Stimuli-responsiveness, Targeted drug delivery, Tissue engineering, Waste management
Llopis-Lorente, A., García-Fernández, A., Murillo-Cremaes, N., Hortelão, A. C., Patinño, T., Villalonga, R., Sancenón, F., Martínez-Máñer, R., Sánchez, S., (2019). Enzyme-powered gated mesoporous silica nanomotors for on-command intracellular payload delivery ACS Nano 13, (10), 12171-12183
The introduction of stimuli-responsive cargo release capabilities on self-propelled micro- and nanomotors holds enormous potential in a number of applications in the biomedical field. Herein, we report the preparation of mesoporous silica nanoparticles gated with pH-responsive supramolecular nanovalves and equipped with urease enzymes which act as chemical engines to power the nanomotors. The nanoparticles are loaded with different cargo molecules ([Ru(bpy)3]Cl2 (bpy = 2,2′-bipyridine) or doxorubicin), grafted with benzimidazole groups on the outer surface, and capped by the formation of inclusion complexes between benzimidazole and cyclodextrin-modified urease. The nanomotor exhibits enhanced Brownian motion in the presence of urea. Moreover, no cargo is released at neutral pH, even in the presence of the biofuel urea, due to the blockage of the pores by the bulky benzimidazole:cyclodextrin-urease caps. Cargo delivery is only triggered on-command at acidic pH due to the protonation of benzimidazole groups, the dethreading of the supramolecular nanovalves, and the subsequent uncapping of the nanoparticles. Studies with HeLa cells indicate that the presence of biofuel urea enhances nanoparticle internalization and both [Ru(bpy)3]Cl2 or doxorubicin intracellular release due to the acidity of lysosomal compartments. Gated enzyme-powered nanomotors shown here display some of the requirements for ideal drug delivery carriers such as the capacity to self-propel and the ability to “sense” the environment and deliver the payload on demand in response to predefined stimuli.
JTD Keywords: Controlled release, Drug delivery, Enzymatic catalysis, Gatekeepers, Nanocarriers, Nanomotors, Stimuli-responsive nanomaterials
Casanellas, Ignasi, García-Lizarribar, Andrea, Lagunas, Anna, Samitier, Josep, (2018). Producing 3D biomimetic nanomaterials for musculoskeletal system regeneration Frontiers in Bioengineering and Biotechnology 6, Article 128
The human musculoskeletal system is comprised mainly of connective tissues such as cartilage, tendon, ligaments, skeletal muscle and skeletal bone. These tissues support the structure of the body, hold and protect the organs, and are responsible of movement. Since it is subjected to continuous strain, the musculoskeletal system is prone to injury by excessive loading forces or aging, whereas currently available treatments are usually invasive and not always effective. Most of the musculoskeletal injuries require surgical intervention facing a limited post-surgery tissue regeneration, especially for widespread lesions. Therefore, many tissue engineering approaches have been developed tackling musculoskeletal tissue regeneration. Materials are designed to meet the chemical and mechanical requirements of the native tissue three-dimensional (3D) environment, thus facilitating implant integration while providing a good reabsorption rate. With biological systems operating at the nanoscale, nanoengineered materials have been developed to support and promote regeneration at the interprotein communication level. Such materials call for a great precision and architectural control in the production process fostering the development of new fabrication techniques. In this mini review, we would like to summarize the most recent advances in 3D nanoengineered biomaterials for musculoskeletal tissue regeneration, with especial emphasis on the different techniques used to produce them.
JTD Keywords: Nanofiber, 3D printing, Musculoskeletal, Regeneration, Scaffold, Tissue Engineering, Stimuli-responsive
Benetti, E., Navarro, M., Zapotoczny, S., Vancso, G. J., (2009). Stimuli-Responsive Polymer Brushes Surface Design: Applications in Bioscience and Nanotechnology (ed. Förch, R. , Schönherr, H. , Jenkins, A.T.A), Wiley-VCH GmbH & Co. KGaA (Weinheim, Germany) , 125-144