DONATE

Publications

by Keyword: Supervised learning

Santos-Pata, D, Amil, AF, Raikov, IG, Rennó-Costa, C, Mura, A, Soltesz, I, Verschure, PFMJ, (2021). Epistemic Autonomy: Self-supervised Learning in the Mammalian Hippocampus Trends In Cognitive Sciences 25, 582-595

Biological cognition is based on the ability to autonomously acquire knowledge, or epistemic autonomy. Such self-supervision is largely absent in artificial neural networks (ANN) because they depend on externally set learning criteria. Yet training ANN using error backpropagation has created the current revolution in artificial intelligence, raising the question of whether the epistemic autonomy displayed in biological cognition can be achieved with error backpropagation-based learning. We present evidence suggesting that the entorhinal–hippocampal complex combines epistemic autonomy with error backpropagation. Specifically, we propose that the hippocampus minimizes the error between its input and output signals through a modulatory counter-current inhibitory network. We further discuss the computational emulation of this principle and analyze it in the context of autonomous cognitive systems. © 2021 Elsevier Ltd

JTD Keywords: computational model, dentate gyrus, error backpropagation, granule cells, grid cells, hippocampus, inhibition, input, neural-networks, neurons, transformation, Artificial intelligence, Artificial neural network, Back propagation, Backpropagation, Brain, Cognitive systems, Counter current, Error back-propagation, Error backpropagation, Errors, Expressing interneurons, Hippocampal complex, Hippocampus, Human experiment, Input and outputs, Learning, Mammal, Mammalian hippocampus, Mammals, Neural networks, Nonhuman, Review, Self-supervised learning


Herreros, I., (2018). Learning and control Living machines: A handbook of research in biomimetics and biohybrid systems (ed. Prescott, T. J., Lepora, Nathan, Verschure, P.), Oxford Scholarship (Oxford, UK) , 239-255

This chapter discusses basic concepts from control theory and machine learning to facilitate a formal understanding of animal learning and motor control. It first distinguishes between feedback and feed-forward control strategies, and later introduces the classification of machine learning applications into supervised, unsupervised, and reinforcement learning problems. Next, it links these concepts with their counterparts in the domain of the psychology of animal learning, highlighting the analogies between supervised learning and classical conditioning, reinforcement learning and operant conditioning, and between unsupervised and perceptual learning. Additionally, it interprets innate and acquired actions from the standpoint of feedback vs anticipatory and adaptive control. Finally, it argues how this framework of translating knowledge between formal and biological disciplines can serve us to not only structure and advance our understanding of brain function but also enrich engineering solutions at the level of robot learning and control with insights coming from biology.

JTD Keywords: Feedback control, Feed-forward control, Supervised learning, Unsupervised learning, Reinforcement, Learning, Classical conditioning, Operant conditioning, Reflex, Anticipatory reflex