by Keyword: Differential expression
Han, J, Jeong, HJ, Choi, J, Kim, H, Kwon, T, Myung, K, Park, K, Park, JI, Sanchez, S, Jung, DB, Yu, CS, Song, IH, Shim, JH, Myung, SJ, Kang, HW, Park, TE, (2025). Bioprinted Patient-Derived Organoid Arrays Capture Intrinsic and Extrinsic Tumor Features for Advanced Personalized Medicine Advanced Science , 2407871
Heterogeneity and the absence of a tumor microenvironment (TME) in traditional patient-derived organoid (PDO) cultures limit their effectiveness for clinical use. Here, Embedded Bioprinting-enabled Arrayed PDOs (Eba-PDOs) featuring uniformly arrayed colorectal cancer (CRC) PDOs within a recreated TME is presented. This model faithfully reproduces critical TME attributes, including elevated matrix stiffness (approximate to 7.5 kPa) and hypoxic conditions found in CRC. Transcriptomic and immunofluorescence microscopy analysis reveal that Eba-PDOs more accurately represent actual tissues compared to traditional PDOs. Furthermore, Eba-PDO effectively capture the variability of CEACAM5 expression-a critical CRC marker-across different patients, correlating with patient classification and differential responses to 5-fluorouracil treatment. This method achieves an uniform size and shape within PDOs from the same patient while preserving distinct morphological features among those from different individuals. These features of Eba-PDO enable the efficient development of a label-free, morphology-based predictive model using supervised learning, enhancing its suitability for clinical applications. Thus, this approach to PDO bioprinting is a promising tool for generating personalized tumor models and advancing precision medicine.
JTD Keywords: Association, Cancer, Carcinoembryonic antigen-expression, Colorectal cancer, Cultur, Differential expression, Embedded bioprinting, Extracellular-matrix, Inter-patient variability, Patient-derived tumor organoid, Stem-cell, Stiffness, Supervised learning, Tissues, Tumor matrix stiffnes
Palma-Florez, S, Lagunas, A, Mir, M, (2024). Neurovascular unit on a chip: the relevance and maturity as an advanced in vitro model Neural Regeneration Research 19, 1165-1166
[No abstract available]
JTD Keywords: Alpha synuclein, Animal cell, Article, Astrocyte, Brain blood flow, Capillary endothelial cell, Cardiovascular system, Cell interaction, Coculture, Degenerative disease, Differential expression analysis, Endothelium cell, Entactin, Extracellular matrix, Fibronectin, Gene expression, Human, Human cell, Huntington chorea, Hydroxyapatite, In vitro study, Induced pluripotent stem cell, Laminin, Macrophage, Maturity, Microglia, Nervous system, Nervous system inflammation, Neuroprotection, Neurotoxicity, Nonhuman, Parkinson disease, Pericyte, Perivascular space, Personalized medicine, Shear stress, Smooth muscle cell, Three dimensional printing