by Keyword: additive manufacturing
Fontana-Escartín, A, Lanzalaco, S, Pérez-Madrigal, MM, Bertran, O, Alemán, C, (2022). Electrochemical activation for sensing of three‐dimensional‐printed poly(lactic acid) using low‐pressure plasma Plasma Processes And Polymers 19, e2200101
Subirada, Francesc, Paoli, Roberto, Sierra-Agudelo, Jessica, Lagunas, Anna, Rodriguez-Trujillo, Romen, Samitier, Josep, (2022). Development of a Custom-Made 3D Printing Protocol with Commercial Resins for Manufacturing Microfluidic Devices Polymers 14, 2955
The combination of microfluidics and photo-polymerization techniques such as stereolithography (SLA) has emerged as a new field which has a lot of potential to influence in such important areas as biological analysis, and chemical detection among others. However, the integration between them is still at an early stage of development. In this article, after analyzing the resolution of a custom SLA 3D printer with commercial resins, microfluidic devices were manufactured using three different approaches. First, printing a mold with the objective of creating a Polydimethylsiloxane (PDMS) replica with the microfluidic channels; secondly, open channels have been printed and then assembled with a flat cover of the same resin material. Finally, a closed microfluidic device has also been produced in a single process of printing. Important results for 3D printing with commercial resins have been achieved by only printing one layer on top of the channel. All microfluidic devices have been tested successfully for pressure-driven fluid flow.
JTD Keywords: 3d printing, additive manufacturing, microfluidics, photo-curable polymers, 3d printing, Additive manufacturing, Microfluidics, Photo-curable polymers, Stereolithography
Fontana-Escartin, A, Puiggalí-Jou, A, Lanzalaco, S, Bertran, O, Aleman, C, (2021). Manufactured Flexible Electrodes for Dopamine Detection: Integration of Conducting Polymer in 3D-Printed Polylactic Acid Advanced Engineering Materials 23, 2100002
Flexible electrochemical sensors based on electroactive materials have emerged as powerful analytical tools for biomedical applications requiring bioanalytes detection. Within this context, 3D printing is a remarkable technology for developing electrochemical devices, due to no design constraints, waste minimization, and batch manufacturing with high reproducibility. However, the fabrication of 3D printed electrodes is still limited by the in-house fabrication of conductive filaments, which requires the mixture of the electroactive material with melted of thermoplastic polymer (e.g., polylactic acid, PLA). Herein, a simple approach is presented for preparing electrochemical dopamine (DA) biosensors. Specifically, the surface of 3D-printed PLA specimens, which exhibit an elastic modulus and a tensile strength of 3.7 +/- 0.3 GPa and 47 +/- 1 MPa, respectively, is activated applying a 0.5 m NaOH solution for 30 min and, subsequently, poly(3,4-ethylenedioxythiophene) is polymerized in situ using aqueous solvent. The detection of DA with the produced sensors has been demonstrated by cyclic voltammetry, differential pulse voltammetry, and chronoamperometry. In summary, the obtained results reflect that low-cost electrochemical sensors, which are widely used in medicine and biotechnology, can be rapidly fabricated using the proposed approach that, although based on additive manufacturing, does not require the preparation of conductive filaments.
JTD Keywords: 3d printers, Additive manufacturing, Amines, Batch manufacturing, Biomedical applications, Chronoamperometry, Conducting polymer, Conducting polymers, Conductive filaments, Conservation, Cyclic voltammetry, Differential pulse voltammetry, Electroactive material, Electrochemical biosensor, Electrochemical devices, Electrochemical sensors, Electrodes, Electron emission, Flexible electrode, High reproducibility, Medical applications, Neurophysiology, Poly-3 ,4-ethylenedioxythiophene, Polyesters, Polylactic aci, Sodium hydroxide, Tensile strength, Thermoplastic polymer