by Keyword: calcium phosphate cement
Carter, SSD, Atif, AR, Diez-Escudero, A, Grape, M, Ginebra, MP, Tenje, M, Mestres, G, (2022). A microfluidic-based approach to investigate the inflammatory response of macrophages to pristine and drug-loaded nanostructured hydroxyapatite Materials Today Bio 16, 100351
The in vitro biological characterization of biomaterials is largely based on static cell cultures. However, for highly reactive biomaterials such as calcium-deficient hydroxyapatite (CDHA), this static environment has limitations. Drastic alterations in the ionic composition of the cell culture medium can negatively affect cell behavior, which can lead to misleading results or data that is difficult to interpret. This challenge could be addressed by a microfluidics-based approach (i.e. on-chip), which offers the opportunity to provide a continuous flow of cell culture medium and a potentially more physiologically relevant microenvironment. The aim of this work was to explore microfluidic technology for its potential to characterize CDHA, particularly in the context of inflammation. Two different CDHA substrates (chemically identical, but varying in microstructure) were integrated on-chip and subsequently evaluated. We demonstrated that the on-chip environment can avoid drastic ionic alterations and increase protein sorption, which was reflected in cell studies with RAW 264.7 macrophages. The cells grown on-chip showed a high cell viability and enhanced proliferation compared to cells maintained under static conditions. Whereas no clear differences in the secretion of tumor necrosis factor alpha (TNF-α) were found, variations in cell morphology suggested a more anti-inflammatory environment on-chip. In the second part of this study, the CDHA substrates were loaded with the drug Trolox. We showed that it is possible to characterize drug release on-chip and moreover demonstrated that Trolox affects the TNF-α secretion and morphology of RAW 264.7 cells. Overall, these results highlight the potential of microfluidics to evaluate (bioactive) biomaterials, both in pristine form and when drug-loaded. This is of particular interest for the latter case, as it allows the biological characterization and assessment of drug release to take place under the same dynamic in vitro environment.© 2022 The Authors.
JTD Keywords: alpha-tocopherol, antioxidant, biomaterials, calcium phosphate cement, culture, delivery, drug release, in vitro, in-vitro, ion, macrophage, on-chip, release, tool, Biomaterial, Calcium phosphate cement, Calcium-phosphate cements, Drug release, In vitro, Macrophage, On-chip
Mestres, G., Fernandez-Yague, M. A., Pastorino, D., Montufar, E. B., Canal, C., Manzanares-Céspedes, M. C., Ginebra, M. P., (2019). In vivo efficiency of antimicrobial inorganic bone grafts in osteomyelitis treatments Materials Science and Engineering: C 97, 84-95
The purpose of the present work was to evaluate in vivo different antimicrobial therapies to eradicate osteomyelitis created in the femoral head of New Zealand rabbits. Five phosphate-based cements were evaluated: calcium phosphate cements (CPC) and calcium phosphate foams (CPF), both in their pristine form and loaded with doxycycline hyclate, and an intrinsic antimicrobial magnesium phosphate cement (MPC; not loaded with an antibiotic). The cements were implanted in a bone previously infected with Staphylococcus aureus to discern the effects of the type of antibiotic administration (systemic vs. local), porosity (microporosity, i.e. <5 μm vs. macroporosity, i.e. >5 μm) and type of antimicrobial mechanism (release of antibiotic vs. intrinsic antimicrobial activity) on the improvement of the health state of the infected animals. A new method was developed, with a more comprehensive composite score that integrates 5 parameters of bone infection, 4 parameters of bone structural integrity and 4 parameters of bone regeneration. This method was used to evaluate the health state of the infected animals, both before and after osteomyelitis treatment. The results showed that the composite score allows to discern statistically significant differences between treatments that individual evaluations were not able to identify. Despite none of the therapies completely eradicated the infection, it was observed that macroporous materials (CPF and CPFd, the latter loaded with doxycycline hyclate) and intrinsic antimicrobial MPC allowed a better containment of the osteomyelitis. This study provides novel insights to understand the effect of different antimicrobial therapies in vivo, and a promising comprehensive methodology to evaluate the health state of the animals was developed. We expect that the implementation of such methodology could improve the criteria to select a proper antimicrobial therapy.
JTD Keywords: Calcium phosphate cements, Calcium phosphate foams, Drug delivery, In vivo, Magnesium phosphate cements, Osteomyelitis
Maazouz, Y., Montufar, E. B., Malbert, J., Espanol, M., Ginebra, M. P., (2017). Self-hardening and thermoresponsive alpha tricalcium phosphate/pluronic pastes Acta Biomaterialia 49, 563-574
Although calcium phosphate cements (CPCs) are used for bone regeneration in a wide range of clinical applications, various physicochemical phenomena are known to hinder their potential use in minimally invasive surgery or in highly vascularized surgical sites, mainly because of their lack of injectability or their low washout resistance. The present work shows that the combination of CPCs with an inverse-thermoresponsive hydrogel is a good strategy for finely tuning the cohesive and rheological properties of CPCs to achieve clinical acceptable injectability to prevent phase separation during implantation and cohesion to avoid washout of the paste. The thermoresponsive CPC developed combines alpha-tricalcium phosphate with an aqueous solution of pluronic F127, which exhibits an inverse thermoresponsive behaviour, with a gelling transformation at around body temperature. These novel CPCs exhibited temperature-dependent properties. Addition of the polymer enhanced the injectability of the paste, even at a low liquid-to-powder ratio, and allowed the rheological properties of the cement to be tuned, with the injection force decreasing with the temperature of the paste. Moreover, the cohesion of the paste was also temperature-dependent and increased as the temperature of the host medium increased due to gelling induced in the paste. The thermoresponsive cement exhibited excellent cohesion and clinically acceptable setting times at 37 °C, irrespective of the initial temperature of the paste. The addition of pluronic F127 slightly delayed the setting reaction in the early stages but did not hinder the full transformation to calcium-deficient hydroxyapatite. Moreover, the frozen storage of premixed thermoresponsive cement pastes was explored, the main physicochemical properties of the cements being maintained upon thawing, even after 18 months of frozen storage. This avoids the need to mix the cement in the operating theatre and allows its use off-the-shelf. The reverse thermoresponsive cements studied herein open up new perspectives in the surgical field, where the sequential gelling/hardening of these novel cements could allow for a better and safer clinical application. Statement of Significance: Calcium phosphate cements are attractive bone substitutes due to their similarity to the bone mineral phase. Although they can be injectable, cohesion and stability of the paste are crucial in terms of performance and safety. A common strategy is the combination with hydrogels. However, this often results in a decrease of viscosity with increasing temperature, which can lead to extravasation and particle leakage from the bone defect. The preferred evolution would be the opposite: a low viscosity would enhance mixing and injection, and an instantaneous increase of viscosity after injection would ensure washout resistance to the blood flow. Here we develop for the first time a calcium phosphate cement exhibiting reverse thermoresponsive properties using a poloxamer featuring inverse thermal gelling.
JTD Keywords: Calcium phosphate cement, Cohesion, Hydroxyapatite, Injectability, Pluronic, Thermoresponsive
Kovtun, A., Goeckelmann, M. J., Niclas, A. A., Montufar, E. B., Ginebra, M. P., Planell, J. A., Santin, M., Ignatius, A., (2015). In vivo performance of novel soybean/gelatin-based bioactive and injectable hydroxyapatite foams Acta Biomaterialia Elsevier Ltd 12, (1), 242-249
Major limitations of calcium phosphate cements (CPCs) are their relatively slow degradation rate and the lack of macropores allowing the ingrowth of bone tissue. The development of self-setting cement foams has been proposed as a suitable strategy to overcome these limitations. In previous work we developed a gelatine-based hydroxyapatite foam (G-foam), which exhibited good injectability and cohesion, interconnected porosity and good biocompatibility in vitro. In the present study we evaluated the in vivo performance of the G-foam. Furthermore, we investigated whether enrichment of the foam with soybean extract (SG-foam) increased its bioactivity. G-foam, SG-foam and non-foamed CPC were implanted in a critical-size bone defect in the distal femoral condyle of New Zealand white rabbits. Bone formation and degradation of the materials were investigated after 4, 12 and 20 weeks using histological and biomechanical methods. The foams maintained their macroporosity after injection and setting in vivo. Compared to non-foamed CPC, cellular degradation of the foams was considerably increased and accompanied by new bone formation. The additional functionalization with soybean extract in the SG-foam slightly reduced the degradation rate and positively influenced bone formation in the defect. Furthermore, both foams exhibited excellent biocompatibility, implying that these novel materials may be promising for clinical application in non-loaded bone defects.
JTD Keywords: Bone regeneration, Calcium phosphate cement, Gelatine, Rabbit model, Soybean
Castaño, Oscar, Planell, Josep A., (2014). Cements Bio-Ceramics with Clinical Applications (ed. Vallet-Regí, M.), John Wiley & Sons, Ltd (Chichester, UK) , 193-247
Calcium phosphate cements (CPCs) were meant to produce hydroxyapatite (HA), which is the calcium phosphate that usually results when the cements are mixed with or immersed in aqueous media. The golden age of CPCs was in the late 1990s and the beginning of the 21st century, when they were presented as promising bone substitutes and drug delivery systems. The different reactions that take part in the cement self-setting process depend on many experimental factors – the composition of the cement, the stability of the different components, pH, liquid-to-powder ratio (LPR), and temperature, among others. CPCs have demonstrated fair efficiency for bone regeneration. Cements have gradually been embraced in the wider field of composites by hybridizing their compositions in order that they may adapt to the new trends.
JTD Keywords: Calcium phosphate cements (CPCs), Cements, Hydroxyapatite (HA), Liquid-to-powder ratio (LPR)
Montufar, E. B., Maazouz, Y., Ginebra, M. P., (2013). Relevance of the setting reaction to the injectability of tricalcium phosphate pastes Acta Biomaterialia 9, (4), 6188-6198
The aim of the present work was to analyze the influence of the setting reaction on the injectability of tricalcium phosphate (TCP) pastes. Even if the injection was performed early after mixing powder and liquid, powder reactivity was shown to play a significant role in the injectability of TCP pastes. Significant differences were observed between the injection behavior of non-hardening β-TCP pastes and that of self-hardening α-TCP pastes. The differences were more marked at low liquid-to-powder ratios, using fine powders and injecting through thin needles. α-TCP was, in general, less injectable than β-TCP and required higher injection loads. Moreover, clogging was identified as a mechanism hindering or even preventing injectability, different and clearly distinguishable from the filter-pressing phenomenon. α-TCP pastes presented transient clogging episodes, which were not observed in β-TCP pastes with equivalent particle size distribution. Different parameters affecting powder reactivity were also shown to affect paste injectability. Thus, whereas powder calcination resulted in an increased injectability due to lower particle reactivity, the addition of setting accelerants, such as hydroxyapatite nanoparticles, tended to reduce the injectability of the TCP pastes, especially if adjoined simultaneously with a Na2HPO4 solution. Although, as a general trend, faster-setting pastes were less injectable, some exceptions to this rule were found. For example, whereas in the absence of setting accelerants fine TCP powders were more injectable than the coarse ones, in spite of their shorter setting times, this trend was inverted when setting accelerants were added, and coarse powders were more injectable than the fine ones.
JTD Keywords: Calcium phosphate cement, Hydroxyapatite, Injectability, Setting reaction, Tricalcium phosphate
Perez, R. A., Altankov, G., Jorge-Herrero, E., Ginebra, M. P., (2013). Micro- and nanostructured hydroxyapatite-collagen microcarriers for bone tissue-engineering applications Journal of Tissue Engineering and Regenerative Medicine 7, (5), 353-361
Novel hydroxyapatite (HA)-collagen microcarriers (MCs) with different micro/nanostructures were developed for bone tissue-engineering applications. The MCs were fabricated via calcium phosphate cement (CPC) emulsion in oil. Collagen incorporation in the liquid phase of the CPC resulted in higher MC sphericity. The MCs consisted of a porous network of entangled hydroxyapatite crystals, formed as a result of the CPC setting reaction. The addition of collagen to the MCs, even in an amount as small as 0.8wt%, resulted in an improved interaction with osteoblast-like Saos-2 cells. The micro/nanostructure and the surface texture of the MCs were further tailored by modifying the initial particle size of the CPC. A synergistic effect between the presence of collagen and the nanosized HA crystals was found, resulting in significantly enhanced alkaline phosphatase activity on the collagen-containing nanosized HA MCs.
JTD Keywords: Bone regeneration, Calcium phosphate cement, Cell response, Collagen, Hydroxyapatite, Microcarrier
Ginebra, M. P., Canal, C., Espanol, M., Pastorino, D., Montufar, E. B., (2012). Calcium phosphate cements as drug delivery materials Advanced Drug Delivery Reviews 64, (12), 1090-1110
Calcium phosphate cements are used as synthetic bone grafts, with several advantages, such as their osteoconductivity and injectability. Moreover, their low-temperature setting reaction and intrinsic porosity allow for the incorporation of drugs and active principles in the material. It is the aim of the present work to: a) provide an overview of the different approaches taken in the application of calcium phosphate cements for drug delivery in the skeletal system, and b) identify the most significant achievements. The drugs or active principles associated to calcium phosphate cements are classified in three groups, i) low molecular weight drugs; ii) high molecular weight biomolecules; and iii) ions.
JTD Keywords: Antibiotic, Bioceramic, Biomaterial, Bone regeneration, Calcium phosphate cement, Ceramic matrix, Growth factor, Hydroxyapatite, Ions, Protein
Montufar, Edgar B., Traykova, Tania, Planell, Josep A., Ginebra, Maria-Pau, (2011). Comparison of a low molecular weight and a macromolecular surfactant as foaming agents for injectable self setting hydroxyapatite foams: Polysorbate 80 versus gelatine Materials Science and Engineering: C 31, (7), 1498-1504
Hydroxyapatite foams are potential synthetic bone grafting materials or scaffolds for bone tissue engineering. A novel method to obtain injectable hydroxyapatite foams consists in foaming the liquid phase of a calcium phosphate cement. In this process, the cement powder is incorporated into a liquid foam, which acts as a template for macroporosity. After setting, the cement hardens maintaining the macroporous structure of the foam. In this study a low molecular weight surfactant, Polysorbate 80, and a protein, gelatine, were compared as foaming agents of a calcium phosphate cement. The foamability of Polysorbate 80 was greater than that of gelatine, resulting in higher macroporosity in the set hydroxyapatite foam and higher macropore interconnectivity. Gelatine produced less interconnected foams, especially at high concentrations, due to a higher liquid foam stability. However it increased the injectability and cohesion of the foamed paste, and enhanced osteoblastic-like cell adhesion, all of them important properties for bone grafting materials.
JTD Keywords: Hydroxyapatite, Porosity, Calcium phosphate cement, Scaffolds, Foaming, Bone regeneration
Perut, F., Montufar, E. B., Ciapetti, G., Santin, M., Salvage, J., Traykova, T., Planell, J. A., Ginebra, M. P., Baldini, N., (2011). Novel soybean/gelatine-based bioactive and injectable hydroxyapatite foam: Material properties and cell response Acta Biomaterialia 7, (4), 1780-1787
Despite their known osteoconductivity, clinical use of calcium phosphate cements is limited both by their relatively slow rate of resorption and by rheological properties incompatible with injectability. Bone in-growth and material resorption have been improved by the development of porous calcium phosphate cements. However, injectable formulations have so far only been obtained through the addition of relatively toxic surfactants. The present work describes the response of osteoblasts to a novel injectable foamed bone cement based on a composite formulation including the bioactive foaming agents soybean and gelatine. The foaming properties of both defatted soybean and gelatine gels were exploited to develop a self-hardening soy/gelatine/hydroxyapatite composite foam able to retain porosity upon injection. After setting, the foamed paste produced a calcium-deficient hydroxyapatite scaffold, showing good injectability and cohesion as well as interconnected porosity after injection. The intrinsic bioactivity of soybean and gelatine was shown to favour osteoblast adhesion and growth. These findings suggest that injectable, porous and bioactive calcium phosphate cements can be produced for bone regeneration through minimally invasive surgery.
JTD Keywords: Calcium phosphate cement, Composite, Bone tissue engineering, Cell viability, Bioactivity
Montufar, E. B., Traykova, T., Gil, C., Harr, I., Almirall, A., Aguirre, A., Engel, E., Planell, J. A., Ginebra, M. P., (2010). Foamed surfactant solution as a template for self-setting injectable hydroxyapatite scaffolds for bone regeneration Acta Biomaterialia 6, (3), 876-885
The application of minimally invasive surgical techniques in the field of orthopaedic surgery has created a growing need for new injectable synthetic materials that can be used for bone grafting In this work a novel fully synthetic injectable calcium phosphate foam was developed by mixing alpha-tricalcium phosphate (alpha-TCP) powder with a foamed polysorbate 80 solution Polysorbate 80 is a non-ionic surfactant approved for parenteral applications The foam was able to retain the porous structure after injection provided that the foamed paste was injected shortly after mixing (typically 2 5 min), and set through the hydrolysis of alpha-TCP to a calcium-deficient hydroxyapatite, thus producing a hydroxyapatite solid foam in situ The effect of different processing parameters on the porosity. microstructure, injectability and mechanical properties of the hydroxyapatite foams was analysed, and the ability of the pre-set foam to support osteoblastic-like cell proliferation and differentiation was assessed. Interestingly, the concentration of surfactant needed to obtain the foams was lower than that considered safe in drug formulations for parenteral administration The possibility of combining bioactivity, injectability, macroporosity and self-setting ability in a single fully synthetic material represents a step forward in the design of new materials for bone regeneration compatible with minimally invasive surgical techniques.
JTD Keywords: Calcium phosphate cement, Hydroxyapatite foam, Scaffold, Surfactant, Injectable material
Ginebra, M. P., Espanol, M., Montufar, E. B., Perez, R. A., Mestres, G., (2010). New processing approaches in calcium phosphate cements and their applications in regenerative medicine Acta Biomaterialia 6, (8), 2863-2873
The key feature of calcium phosphate cements (CPCs) lies in the setting reaction triggered by mixing one or more solid calcium phosphate salts with an aqueous solution. Upon mixture, the reaction takes place through a dissolution-precipitation process which is macroscopically observed by a gradual hardening of the cement paste. The precipitation of hydroxyapatite nanocrystals at body or room temperature, and the fact that those materials can be used as self-setting pastes, have for many years been the most attractive features of CPCs. However, the need to develop materials able to sustain bone tissue ingrowth and be capable of delivering drugs and bioactive molecules, together with the continuous requirement from surgeons to develop more easily handling cements, has pushed the development of new processing routes that can accommodate all these requirements, taking advantage of the possibility of manipulating the self-setting CPC paste. It is the goal of this paper to provide a brief overview of the new processing developments in the area of CPCs and to identify the most significant achievements.
JTD Keywords: Bone regeneration, Calcium phosphate cements, Granules, Microcarriers, Scaffolds
Sanzana, E. S., Navarro, M., Macule, F., Suso, S., Planell, J. A., Ginebra, M. P., (2008). Of the in vivo behavior of calcium phosphate cements and glasses as bone substitutes Acta Biomaterialia 4, (6), 1924-1933
The use of injectable self-setting calcium phosphate cements or soluble glass granules represent two different strategies for bone regeneration, each with distinct advantages and potential applications. This study compares the in vivo behavior of two calcium phosphate cements and two phosphate glasses with different composition, microstructure and solubility, using autologous bone as a control, in a rabbit model. The implanted materials were alpha-tricalcium phosphate cement (cement H), calcium sodium potassium phosphate cement (cement R), and two phosphate glasses in the P2O5-CaO-Na2O and P2O5-CaO-Na2O-TiO2 systems. The four materials were osteoconductive, biocompatible and biodegradable. Radiological and histological studies demonstrated correct osteointegration and substitution of the implants by new bone. The reactivity of the different materials, which depends on their solubility, porosity and specific surface area, affected the resorption rate and bone formation mainly during the early stages of implantation, although this effect was weak. Thus, at 4 weeks the degradation was slightly higher in cements than in glasses, especially for cement R. However, after 12 weeks of implantation all materials showed a similar degradation degree and promoted bone neoformation equivalent to that of the control group.
JTD Keywords: Calcium phosphates, Calcium phosphate cements, Phosphate glasses, Bone grafts, Bone regenerations