DONATE

Publications

by Keyword: tool

Carter, SSD, Atif, AR, Diez-Escudero, A, Grape, M, Ginebra, MP, Tenje, M, Mestres, G, (2022). A microfluidic-based approach to investigate the inflammatory response of macrophages to pristine and drug-loaded nanostructured hydroxyapatite Materials Today Bio 16, 100351

The in vitro biological characterization of biomaterials is largely based on static cell cultures. However, for highly reactive biomaterials such as calcium-deficient hydroxyapatite (CDHA), this static environment has limitations. Drastic alterations in the ionic composition of the cell culture medium can negatively affect cell behavior, which can lead to misleading results or data that is difficult to interpret. This challenge could be addressed by a microfluidics-based approach (i.e. on-chip), which offers the opportunity to provide a continuous flow of cell culture medium and a potentially more physiologically relevant microenvironment. The aim of this work was to explore microfluidic technology for its potential to characterize CDHA, particularly in the context of inflammation. Two different CDHA substrates (chemically identical, but varying in microstructure) were integrated on-chip and subsequently evaluated. We demonstrated that the on-chip environment can avoid drastic ionic alterations and increase protein sorption, which was reflected in cell studies with RAW 264.7 macrophages. The cells grown on-chip showed a high cell viability and enhanced proliferation compared to cells maintained under static conditions. Whereas no clear differences in the secretion of tumor necrosis factor alpha (TNF-α) were found, variations in cell morphology suggested a more anti-inflammatory environment on-chip. In the second part of this study, the CDHA substrates were loaded with the drug Trolox. We showed that it is possible to characterize drug release on-chip and moreover demonstrated that Trolox affects the TNF-α secretion and morphology of RAW 264.7 ​cells. Overall, these results highlight the potential of microfluidics to evaluate (bioactive) biomaterials, both in pristine form and when drug-loaded. This is of particular interest for the latter case, as it allows the biological characterization and assessment of drug release to take place under the same dynamic in vitro environment.© 2022 The Authors.

JTD Keywords: alpha-tocopherol, antioxidant, biomaterials, calcium phosphate cement, culture, delivery, drug release, in vitro, in-vitro, ion, macrophage, on-chip, release, tool, Biomaterial, Calcium phosphate cement, Calcium-phosphate cements, Drug release, In vitro, Macrophage, On-chip


Andrian, T, Bakkum, T, van Elsland, DM, Bos, E, Koster, AJ, Albertazzi, L, van Kasteren, SI, Pujals, S, (2021). Super-resolution correlative light-electron microscopy using a click-chemistry approach for studying intracellular trafficking Methods In Cell Biology 162, 303-331

© 2020 Elsevier Inc. Correlative light and electron microscopy (CLEM) entails a group of multimodal imaging techniques that are combined to pinpoint to the location of fluorescently labeled molecules in the context of their ultrastructural cellular environment. Here we describe a detailed workflow for STORM-CLEM, in which STochastic Optical Reconstruction Microscopy (STORM), an optical super-resolution technique, is correlated with transmission electron microscopy (TEM). This protocol has the advantage that both imaging modalities have resolution at the nanoscale, bringing higher synergies on the information obtained. The sample is prepared according to the Tokuyasu method followed by click-chemistry labeling and STORM imaging. Then, after heavy metal staining, electron microscopy imaging is performed followed by correlation of the two images. The case study presented here is on intracellular pathogens, but the protocol is versatile and could potentially be applied to many types of samples.

JTD Keywords: cells, click-chemistry, complex, correlative light and electron microscopy, cycloaddition, ligation, localization, proteins, resolution limit, single molecule localization microscopy, stochastic optical reconstruction microscopy (storm), storm, super-resolution microscopy, tokuyasu cryo-sectioning, tool, Click-chemistry, Correlative light and electron microscopy, Fluorescent-probes, Single molecule localization microscopy, Stochastic optical reconstruction microscopy (storm), Super-resolution microscopy, Tokuyasu cryo-sectioning, Transmission electron microscopy


Estefan, DP, Zucca, R, Arsiwalla, X, Principe, A, Zhang, H, Rocamora, R, Axmacher, N, Verschure, PFMJ, (2021). Volitional learning promotes theta phase coding in the human hippocampus Proceedings Of The National Academy Of Sciences Of The United States Of America 118, e2021238118

© 2021 National Academy of Sciences. All rights reserved. Electrophysiological studies in rodents show that active navigation enhances hippocampal theta oscillations (4–12 Hz), providing a temporal framework for stimulus-related neural codes. Here we show that active learning promotes a similar phase coding regime in humans, although in a lower frequency range (3–8 Hz). We analyzed intracranial electroencephalography (iEEG) from epilepsy patients who studied images under either volitional or passive learning conditions. Active learning increased memory performance and hippocampal theta oscillations and promoted a more accurate reactivation of stimulus-specific information during memory retrieval. Representational signals were clustered to opposite phases of the theta cycle during encoding and retrieval. Critically, during active but not passive learning, the temporal structure of intracycle reactivations in theta reflected the semantic similarity of stimuli, segregating conceptually similar items into more distant theta phases. Taken together, these results demonstrate a multilayered mechanism by which active learning improves memory via a phylogenetically old phase coding scheme.

JTD Keywords: active learning, dynamics, gamma-power, hippocampus, intracranial eeg, movement, navigation, neural phase coding, oscillations, representations, retrieval, rhythm, theta oscillations, toolbox, Active learning, Theta oscillations, Working-memory


Ziyatdinov, A., Diaz, E. Fernández, Chaudry, A., Marco, S., Persaud, K., Perera, A., (2013). A software tool for large-scale synthetic experiments based on polymeric sensor arrays Sensors and Actuators B: Chemical 177, 596-604

This manuscript introduces a software tool that allows for the design of synthetic experiments in machine olfaction. The proposed software package includes both, a virtual sensor array that reproduces the diversity and response of a polymer array and tools for data generation. The synthetic array of sensors allows for the generation of chemosensor data with a variety of characteristics: unlimited number of sensors, support of multicomponent gas mixtures and full parametric control of the noise in the system. The artificial sensor array is inspired from a reference database of seventeen polymeric sensors with concentration profiles for three analytes. The main features in the sensor data, like sensitivity, diversity, drift and sensor noise, are captured by a set of models under simplified assumptions. The generator of sensor signals can be used in applications related to test and benchmarking of signal processing methods, neuromorphic simulations in machine olfaction and educational tools. The software is implemented in R language and can be freely accessed.

JTD Keywords: Gas Sensor Array, Conducting Polymers, Electronic Nose, Sensor Simulation, Synthetic Dataset, Benchmark, Educational Tool