DONATE

Publications

by Keyword: particle-size

Diez-Escudero, A, Espanol, M, Ginebra, MP, (2023). High-aspect-ratio nanostructured hydroxyapatite: towards new functionalities for a classical material Chemical Science 15, 55-76

Hydroxyapatite-based materials have been widely used in countless applications, such as bone regeneration, catalysis, air and water purification or protein separation. Recently, much interest has been given to controlling the aspect ratio of hydroxyapatite crystals from bulk samples. The ability to exert control over the aspect ratio may revolutionize the applications of these materials towards new functional materials. Controlling the shape, size and orientation of HA crystals allows obtaining high aspect ratio structures, improving several key properties of HA materials such as molecule adsorption, ion exchange, catalytic reactions, and even overcoming the well-known brittleness of ceramic materials. Regulating the morphogenesis of HA crystals to form elongated oriented fibres has led to flexible inorganic synthetic sponges, aerogels, membranes, papers, among others, with applications in sustainability, energy and catalysis, and especially in the biomedical field.; Hydroxyapatite-based materials have been widely used in countless applications, such as bone regeneration, catalysis, air and water purification or protein separation.

JTD Keywords: Bone, Calcium-phosphate, Doped hydroxyapatite, Fire-resistant, Hydrothermal synthesis, Metal-ions, Nanoparticles, Nanowires, Particle-size, Porous nanocomposite


Espanol, M, Davis, E, Meslet, E, Mestres, G, Montufar, EB, Ginebra, MP, (2023). Effect of moisture on the reactivity of alpha-tricalcium phosphate Ceramics International 49, 18228-18237

Lolo, FN, Walani, N, Seemann, E, Zalvidea, D, Pavón, DM, Cojoc, G, Zamai, M, de Lesegno, CV, de Benito, FM, Sánchez-Alvarez, M, Uriarte, JJ, Echarri, A, Jiménez-Carretero, D, Escolano, JC, Sánchez, SA, Caiolfa, VR, Navajas, D, Trepat, X, Guck, J, Lamaze, C, Roca-Cusachs, P, Kessels, MM, Qualmann, B, Arroyo, M, Del Pozo, MA, (2023). Caveolin-1 dolines form a distinct and rapid caveolae-independent mechanoadaptation system Nature Cell Biology 25, 120-133

In response to different types and intensities of mechanical force, cells modulate their physical properties and adapt their plasma membrane (PM). Caveolae are PM nano-invaginations that contribute to mechanoadaptation, buffering tension changes. However, whether core caveolar proteins contribute to PM tension accommodation independently from the caveolar assembly is unknown. Here we provide experimental and computational evidence supporting that caveolin-1 confers deformability and mechanoprotection independently from caveolae, through modulation of PM curvature. Freeze-fracture electron microscopy reveals that caveolin-1 stabilizes non-caveolar invaginations-dolines-capable of responding to low-medium mechanical forces, impacting downstream mechanotransduction and conferring mechanoprotection to cells devoid of caveolae. Upon cavin-1/PTRF binding, doline size is restricted and membrane buffering is limited to relatively high forces, capable of flattening caveolae. Thus, caveolae and dolines constitute two distinct albeit complementary components of a buffering system that allows cells to adapt efficiently to a broad range of mechanical stimuli.© 2022. The Author(s).

JTD Keywords: cavin, cell-migration, cholesterol, extracellular-matrix, nanoscale organization, particle-size, polarization, size distribution, tension, Plasma-membrane