DONATE

Publications

by Keyword: cement

del-Mazo-Barbara L, Johansson L, Tampieri F, Ginebra M-P, (2024). Toughening 3D printed biomimetic hydroxyapatite scaffolds: Polycaprolactone-based self-hardening inks Acta Biomaterialia 177, 506-524

The application of 3D printing to calcium phosphates has opened unprecedented possibilities for the fabrication of personalized bone grafts. However, their biocompatibility and bioactivity are counterbalanced by their high brittleness. In this work we aim at overcoming this problem by developing a self-hardening ink containing reactive ceramic particles in a polycaprolactone solution instead of the traditional approach that use hydrogels as binders. The presence of polycaprolactone preserved the printability of the ink and was compatible with the hydrolysis-based hardening process, despite the absence of water in the ink and its hydrophobicity. The microstructure evolved from a continuous polymeric phase with loose ceramic particles to a continuous network of hydroxyapatite nanocrystals intertwined with the polymer, in a configuration radically different from the polymer/ceramic composites obtained by fused deposition modelling. This resulted in the evolution from a ductile behavior, dominated by the polymer, to a stiffer behavior as the ceramic phase reacted. The polycaprolactone binder provides two highly relevant benefits compared to hydrogel-based inks. First, the handleability and elasticity of the as-printed scaffolds, together with the proven possibility of eliminating the solvent, opens the door to implanting the scaffolds freshly printed once lyophilized, while in a ductile state, and the hardening process to take place inside the body, as in the case of calcium phosphate cements. Second, even with a hydroxyapatite content of more than 92 wt.%, the flexural strength and toughness of the scaffolds after hardening are twice and five times those of the all-ceramic scaffolds obtained with the hydrogel-based inks, respectively. Statement of significance: Overcoming the brittleness of ceramic scaffolds would extend the applicability of synthetic bone grafts to high load-bearing situations. In this work we developed a 3D printing ink by replacing the conventional hydrogel binder with a water-free polycaprolactone solution. The presence of polycaprolactone not only enhanced significantly the strength and toughness of the scaffolds while keeping the proportion of bioactive ceramic phase larger than 90 wt.%, but it also conferred flexibility and manipulability to the as-printed scaffolds. Since they are able to harden upon contact with water under physiological conditions, this opens up the possibility of implanting them immediately after printing, while they are still in a ductile state, with clear advantages for fixation and press-fit in the bone defect. © 2024 The Authors

JTD Keywords: 3-d printing, 3d printing, 3d-printing, Binders, Biocompatibility, Biomimetic hydroxyapatites, Biomimetics, Bone cement, Bone scaffolds, Brittleness, Calcium phosphate, Ceramic phase, Ceramic scaffolds, Ceramics particles, Fracture mechanics, Hardening, Hardening process, Hydrogels, Hydroxyapatite, Mechanical properties, Plasticity, Polycaprolactone, Scaffolds, Scaffolds (biology), Self hardening, Strength and toughness


Malandain, N, Sanz-Fraile, H, Farre, R, Otero, J, Roig, A, Laromaine, A, (2023). Cell-Laden 3D Hydrogels of Type I Collagen Incorporating Bacterial Nanocellulose Fibers Acs Applied Bio Materials 6, 3638-3647

There is a growing interest in developing natural hydrogel-based scaffolds to culture cells in a three-dimensional (3D) millieu that better mimics the in vivo cells' microenvironment. A promising approach is to use hydrogels from animal tissues, such as decellularized extracellular matrices; however, they usually exhibit suboptimal mechanical properties compared to native tissue and their composition with hundreds of different protein complicates to elucidate which stimulus triggers cell's responses. As simpler scaffolds, type I collagen hydrogels are used to study cell behavior in mechanobiology even though they are also softer than native tissues. In this work, type I collagen is mixed with bacterial nanocellulose fibers (BCf) to develop reinforced scaffolds with mechanical properties suitable for 3D cell culture. BCf were produced from blended pellicles biosynthesized from Komagataeibacter xylinus. Then, BCf were mixed with concentrated collagen from rat-tail tendons to form composite hydrogels. Confocal laser scanning microscopy and scanning electron microscopy images confirmed the homogeneous macro- and microdistribution of both natural polymers. Porosity analysis confirmed that BCf do not disrupt the scaffold structure. Tensile strength and rheology measurements demonstrated the reinforcement action of BCf (43% increased stiffness) compared to the collagen hydrogel while maintaining the same viscoelastic response. Additionally, this reinforcement of collagen hydrogels with BCf offers the possibility to mix cells before gelation and then proceed to the culture of the 3D cell scaffolds. We obtained scaffolds with human bone marrow-derived mesenchymal stromal cells or human fibroblasts within the composite hydrogels, allowing a homogeneous 3D viable culture for at least 7 days. A smaller surface shrinkage in the reinforced hydrogels compared to type I collagen hydrogels confirmed the strengthening of the composite hydrogels. These collagen hydrogels reinforced with BCf might emerge as a promising platform for 3D in vitro organ modeling, tissue-engineering applications, and suitable to conduct fundamental mechanobiology studies.

JTD Keywords: 3d cell culture, bacterial cellulose, collagen, composite hydrogels, 3d cell culture, Bacterial cellulose, Cellulose/collagen composite, Collagen, Composite hydrogels, Contraction, Cross-linking, Cytocompatibility, Fibroblasts, Matrix, Mechanical-properties, Reinforcement, Stiffness, Tissue engineering


del Moral, M, Loeck, M, Muntimadugu, E, Vives, G, Pham, V, Pfeifer, P, Battaglia, G, Muro, S, Andrianov, AK, (2023). Role of the Lactide:Glycolide Ratio in PLGA Nanoparticle Stability and Release under Lysosomal Conditions for Enzyme Replacement Therapy of Lysosomal Storage Disorders J Funct Biomater 14, 440

Prior studies demonstrated that encapsulation in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) enhanced the delivery of enzymes used for replacement therapy (ERT) of lysosomal storage disorders (LSDs). This study examined how the copolymer lactide:glycolide ratio impacts encapsulation, physicochemical characteristics, stability, and release under lysosomal conditions. Hyaluronidase, deficient in mucopolysaccharidosis IX, was encapsulated in NPs synthesized using 50:50, 60:40, or 75:25 lactide:glycolide copolymers. All NPs had diameters compatible with cellular transport (≤168 nm) and polydispersity indexes (≤0.16) and ζ-potentials (≤-35 mV) compatible with colloidal stability. Yet, their encapsulation efficiency varied, with 75:25 NPs and 60:40 NPs having the lowest and highest EE, respectively (15% vs. 28%). Under lysosomal conditions, the 50:50 copolymer degraded fastest (41% in 1 week), as expected, and the presence of a targeting antibody coat did not alter this result. Additionally, 60:40 NPs destabilized fastest (<1 week) because of their smaller diameter, and 75:25 NPs did not destabilize in 4 weeks. All formulations presented burst release under lysosomal conditions (56-78% of the original load within 30 min), with 50:50 and 60:40 NPs releasing an additional small fraction after week 1. This provided 4 weeks of sustained catalytic activity, sufficient to fully degrade a substrate. Altogether, the 60:40 NP formulation is preferred given its higher EE, and 50:50 NPs represent a valid alternative, while the highest stability of 75:25 NPs may impair lysosomes. These results can guide future studies aiming to translate PLGA NP-based ERT for this and other LSDs.

JTD Keywords: biodegradation, copolymer ratio, degradation, drug-delivery, emulsification, enzyme release, enzyme replacement therapy, hyaluronidase, mechanisms, microspheres, nanoparticle stability, poly(lactide-co-glycolide) nanoparticles, size, sphingomyelinase, transport, Central-nervous-system, Copolymer ratio, Enzyme release, Enzyme replacement therapy, Hyaluronidase, Lysosomal storage disorder, Nanoparticle stability, Poly(lactide-co-glycolide) nanoparticles


Espanol, M, Davis, E, Meslet, E, Mestres, G, Montufar, EB, Ginebra, MP, (2023). Effect of moisture on the reactivity of alpha-tricalcium phosphate Ceramics International 49, 18228-18237

Placci, M, Giannotti, MI, Muro, S, (2023). Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders Advanced Drug Delivery Reviews 197, 114683

Lysosomes play a central role in cellular homeostasis and alterations in this compartment associate with many diseases. The most studied example is that of lysosomal storage disorders (LSDs), a group of 60 + maladies due to genetic mutations affecting lysosomal components, mostly enzymes. This leads to aberrant intracellular storage of macromolecules, altering normal cell function and causing multiorgan syndromes, often fatal within the first years of life. Several treatment modalities are available for a dozen LSDs, mostly consisting of enzyme replacement therapy (ERT) strategies. Yet, poor biodistribution to main targets such as the central nervous system, musculoskeletal tissue, and others, as well as generation of blocking antibodies and adverse effects hinder effective LSD treatment. Drug delivery systems are being studied to surmount these obstacles, including polymeric constructs and nanoparticles that consti-tute the focus of this article. We provide an overview of the formulations being tested, the diseases they aim to treat, and the results observed from respective in vitro and in vivo studies. We also discuss the advantages and disadvantages of these strategies, the remaining gaps of knowledge regarding their per-formance, and important items to consider for their clinical translation. Overall, polymeric nanocon-structs hold considerable promise to advance treatment for LSDs.(c) 2023 Elsevier B.V. All rights reserved.

JTD Keywords: cellular and animal models, enzyme replacement therapy, lysosomal storage disorders, nanoemulsions, nanoparticles, Beta-glucuronidase deficiency, Blood-brain-barrier, Cellular and animal models, Central-nervous-system, Enzyme replacement therapy, Feline gm1 gangliosidosis, Human acid sphingomyelinase, Human alpha-galactosidase, Lysosomal storage disorders, Mucopolysaccharidosis type-ii, Nanoemulsions, Nanoparticles, Neuronal ceroid-lipofuscinosis, Niemann-pick-disease, Pluripotent stem-cells, Polymer-based drug delivery systems


Escartín, A, El Hauadi, K, Lanzalaco, S, Perez-Madrigal, MM, Armelin, E, Turon, P, Alemán, C, (2023). Preparation and Characterization of Functionalized Surgical Meshes for Early Detection of Bacterial Infections Acs Biomaterials Science & Engineering 9, 1104-1115

Isotactic polypropylene (i-PP) nonabsorbable surgical meshes are modified by incorporating a conducting polymer (CP) layer to detect the adhesion and growth of bacteria by sensing the oxidation of nicotinamide adenine dinucleotide (NADH), a metabolite produced by the respiration reactions of such microorganisms, to NAD+. A three-step process is used for such incorporation: (1) treat pristine meshes with low-pressure O2 plasma; (2) functionalize the surface with CP nanoparticles; and (3) coat with a homogeneous layer of electropolymerized CP using the nanoparticles introduced in (2) as polymerization nuclei. The modified meshes are stable and easy to handle and also show good electrochemical response. The detection by cyclic voltammetry of NADH within the interval of concentrations reported for bacterial cultures is demonstrated for the two modified meshes. Furthermore, Staphylococcus aureus and both biofilm-positive (B+) and biofilm-negative (B-) Escherichia coli cultures are used to prove real-time monitoring of NADH coming from aerobic respiration reactions. The proposed strategy, which offers a simple and innovative process for incorporating a sensor for the electrochemical detection of bacteria metabolism to currently existing surgical meshes, holds considerable promise for the future development of a new generation of smart biomedical devices to fight against post-operative bacterial infections.

JTD Keywords: adhesion, bacteria metabolism, behavior, biocompatibility, conducting polymer, electrochemical sensor, hernia repair, in-vivo, liquid, nadh detection, plasma treatment, prevention, reinforcement, sensor, smart meshes, Bacteria metabolism, Polypropylene mesh, Smart meshes


Carter, SSD, Atif, AR, Diez-Escudero, A, Grape, M, Ginebra, MP, Tenje, M, Mestres, G, (2022). A microfluidic-based approach to investigate the inflammatory response of macrophages to pristine and drug-loaded nanostructured hydroxyapatite Materials Today Bio 16, 100351

The in vitro biological characterization of biomaterials is largely based on static cell cultures. However, for highly reactive biomaterials such as calcium-deficient hydroxyapatite (CDHA), this static environment has limitations. Drastic alterations in the ionic composition of the cell culture medium can negatively affect cell behavior, which can lead to misleading results or data that is difficult to interpret. This challenge could be addressed by a microfluidics-based approach (i.e. on-chip), which offers the opportunity to provide a continuous flow of cell culture medium and a potentially more physiologically relevant microenvironment. The aim of this work was to explore microfluidic technology for its potential to characterize CDHA, particularly in the context of inflammation. Two different CDHA substrates (chemically identical, but varying in microstructure) were integrated on-chip and subsequently evaluated. We demonstrated that the on-chip environment can avoid drastic ionic alterations and increase protein sorption, which was reflected in cell studies with RAW 264.7 macrophages. The cells grown on-chip showed a high cell viability and enhanced proliferation compared to cells maintained under static conditions. Whereas no clear differences in the secretion of tumor necrosis factor alpha (TNF-α) were found, variations in cell morphology suggested a more anti-inflammatory environment on-chip. In the second part of this study, the CDHA substrates were loaded with the drug Trolox. We showed that it is possible to characterize drug release on-chip and moreover demonstrated that Trolox affects the TNF-α secretion and morphology of RAW 264.7 ​cells. Overall, these results highlight the potential of microfluidics to evaluate (bioactive) biomaterials, both in pristine form and when drug-loaded. This is of particular interest for the latter case, as it allows the biological characterization and assessment of drug release to take place under the same dynamic in vitro environment.© 2022 The Authors.

JTD Keywords: alpha-tocopherol, antioxidant, biomaterials, calcium phosphate cement, culture, delivery, drug release, in vitro, in-vitro, ion, macrophage, on-chip, release, tool, Biomaterial, Calcium phosphate cement, Calcium-phosphate cements, Drug release, In vitro, Macrophage, On-chip


Abramov, A, Maiti, B, Keridou, I, Puiggalí, J, Reiser, O, Díaz, DD, (2021). A pH-Triggered Polymer Degradation or Drug Delivery System by Light-Mediated Cis/Trans Isomerization of o-Hydroxy Cinnamates Macromolecular Rapid Communications 42, 2100213

A new methodology for the pH-triggered degradation of polymers or for the release of drugs under visible light irradiation based on the cyclization of ortho-hydroxy-cinnamates (oHC) to coumarins is described. The key oHC structural motif can be readily incorporated into the rational design of novel photocleavable polymers via click chemistry. This main-chain moiety undergoes a fast photocleavage when irradiated with 455 nm light provided that a suitable base is added. A series of polyethylene glycol-alt-ortho-hydroxy cinnamate (polyethylene glycol (PEG)(n)-alt-oHC)-based polymers are synthesized and the time-dependent visible-light initiated cleavage of the photoactive monomer and polymer is investigated in solution by a variety of spectroscopic and chromatographic techniques. The photo-degradation behavior of the water-soluble poly(PEG(2000)-alt-oHC) is investigated within a broad pH range (pH = 2.1-11.8), demonstrating fast degradation at pH 11.8, while the stability of the polymer is greatly enhanced at pH 2.1. Moreover, the neat polymer shows long-term stability under daylight conditions, thus allowing its storage without special precautions. In addition, two water-soluble PEG-based drug-carrier molecules (mPEG(2000)-oHC-benzhydrol/phenol) are synthesized and used for drug delivery studies, monitoring the process by UV-vis spectroscopy in an ON/OFF intermittent manner.

JTD Keywords: coumarins, drug delivery, e/z-double bond isomerization, o-hydroxy cinnamates, polymer degradation, Aliphatic compounds, Antioxidant activity, Antitumor, Chromatographic techniques, Chromatography, Cis/trans isomerization, Controlled drug delivery, Coumarin derivatives, Coumarins, Drug delivery, Drug delivery system, E/z-double bond isomerization, Films, Hydrogels, Image enhancement, Light, Long term stability, O-hydroxy cinnamates, Particles, Photoactive monomers, Photodegradation, Polyethylene glycols, Polyethylenes, Polymer degradation, Responsive polymers, Salts, Structural motifs, Synthesis (chemical), Targeted drug delivery, Visible light photocatalysis, Visible-light irradiation


Seras-Franzoso, J, Diaz-Riascos, ZV, Corchero, JL, González, P, Garcia-Aranda, N, Mandaña, M, Riera, R, Boullosa, A, Mancilla, S, Grayston, A, Moltó-Abad, M, Garcia-Fruitós, E, Mendoza, R, Pintos-Morell, G, Albertazzi, L, Rosell, A, Casas, J, Villaverde, A, Schwartz, S, Abasolo, I, (2021). Extracellular vesicles from recombinant cell factories improve the activity and efficacy of enzymes defective in lysosomal storage disorders Journal Of Extracellular Vesicles 10, e12058

In the present study the use of extracellular vesicles (EVs) as vehicles for therapeutic enzymes in lysosomal storage disorders was explored. EVs were isolated from mammalian cells overexpressing alpha-galactosidase A (GLA) or N-sulfoglucosamine sulfohydrolase (SGSH) enzymes, defective in Fabry and Sanfilippo A diseases, respectively. Direct purification of EVs from cell supernatants was found to be a simple and efficient method to obtain highly active GLA and SGSH proteins, even after EV lyophilization. Likewise, EVs carrying GLA (EV-GLA) were rapidly uptaken and reached the lysosomes in cellular models of Fabry disease, restoring lysosomal functionality much more efficiently than the recombinant enzyme in clinical use. In vivo, EVs were well tolerated and distributed among all main organs, including the brain. DiR-labelled EVs were localized in brain parenchyma 1 h after intra-arterial (internal carotid artery) or intravenous (tail vein) administrations. Moreover, a single intravenous administration of EV-GLA was able to reduce globotriaosylceramide (Gb3) substrate levels in clinically relevant tissues, such kidneys and brain. Overall, our results demonstrate that EVs from cells overexpressing lysosomal enzymes act as natural protein delivery systems, improving the activity and the efficacy of the recombinant proteins and facilitating their access to organs neglected by conventional enzyme replacement therapies.

JTD Keywords: alpha?galactosidase a, alpha‐galactosidase a, drug delivery, enzyme replacement therapy, fabry disease, lysosomal storage disorders, n-sulfoglucosamine sulfohydrolase, n?sulfoglucosamine sulfohydrolase, n‐sulfoglucosamine sulfohydrolase, sanfilippo syndrome, Alpha-galactosidase a, Drug delivery, Enzyme replacement therapy, Fabry disease, Lysosomal storage disorders, N-sulfoglucosamine sulfohydrolase, Sanfilippo syndrome


Freire IT, Amil AF, Vouloutsi V, Verschure PFMJ, (2021). Towards sample-efficient policy learning with DAC-ML Procedia Computer Science 190, 256-262

The sample-inefficiency problem in Artificial Intelligence refers to the inability of current Deep Reinforcement Learning models to optimize action policies within a small number of episodes. Recent studies have tried to overcome this limitation by adding memory systems and architectural biases to improve learning speed, such as in Episodic Reinforcement Learning. However, despite achieving incremental improvements, their performance is still not comparable to how humans learn behavioral policies. In this paper, we capitalize on the design principles of the Distributed Adaptive Control (DAC) theory of mind and brain to build a novel cognitive architecture (DAC-ML) that, by incorporating a hippocampus-inspired sequential memory system, can rapidly converge to effective action policies that maximize reward acquisition in a challenging foraging task.

JTD Keywords: Cognitive architecture, Distributed adaptive control, Reinforcement learning, Sample-inefficiency problem, Sequence learning


Valenti, S., Yousefzade, O., Puiggalí, J., Macovez, R., (2020). Phase-selective conductivity enhancement and cooperativity length in PLLA/TPU nanocomposite blends with carboxylated carbon nanotubes Polymer 191, 122279

Transmission electron microscopy, temperature-modulated differential scanning calorimetry, and broadband dielectric spectroscopy were employed to characterize ternary nanocomposites consisting of carboxylated carbon nanotubes (CNT) dispersed in a blend of two immiscible polymers, poly(L,lactide) (PLLA) and thermoplastic polyurethane (TPU). The nanocomposite blends were obtained by melt-compounding of PLLA and TPU in the presence of 0.2 wt-% CNT, either in the presence or absence of a Joncryl® ADR chain extender for PLLA, leading to reactive and non-reactive melt mixed samples. In both cases, the binary PLLA/TPU blend is characterized by phase separation into submicron TPU droplets dispersed in the PLLA matrix, and displays two separate glass transition temperatures. The carbon nanotubes are present either inside the TPU phase (samples obtained without chain extender), or at their boundaries (reactive-melt mixed samples). The effect of the sub-micron confinement of the TPU component is to decrease the cooperativity length of the primary segmental relaxation of this polymer, which is accentuated by the presence of the CNT fillers. Depending on the type of sample, five or six distinct relaxations are observed by means of dielectric spectroscopy, which we are able to assign to different dielectric phenomena. Our dielectric data show that the CNT fillers do not contribute directly to the long-range charge transport in the nanocomposite blends, consistent with the nanocomposites morphology, but rather result in a shift of the Maxwell-Wagner-Sillars space-charge frequency associated with charge accumulation at the PLLA/TPU boundary. Such shift testifies to a selective conductivity enhancement of the TPU phase due to the filler.

JTD Keywords: Conductivity enhancement, Cooperatively rearranging region, Dielectric spectroscopy, Glass transition, Maxwell-Wagner-Sillars relaxation, Nanofiller


Mestres, G., Fernandez-Yague, M. A., Pastorino, D., Montufar, E. B., Canal, C., Manzanares-Céspedes, M. C., Ginebra, M. P., (2019). In vivo efficiency of antimicrobial inorganic bone grafts in osteomyelitis treatments Materials Science and Engineering: C 97, 84-95

The purpose of the present work was to evaluate in vivo different antimicrobial therapies to eradicate osteomyelitis created in the femoral head of New Zealand rabbits. Five phosphate-based cements were evaluated: calcium phosphate cements (CPC) and calcium phosphate foams (CPF), both in their pristine form and loaded with doxycycline hyclate, and an intrinsic antimicrobial magnesium phosphate cement (MPC; not loaded with an antibiotic). The cements were implanted in a bone previously infected with Staphylococcus aureus to discern the effects of the type of antibiotic administration (systemic vs. local), porosity (microporosity, i.e. <5 μm vs. macroporosity, i.e. >5 μm) and type of antimicrobial mechanism (release of antibiotic vs. intrinsic antimicrobial activity) on the improvement of the health state of the infected animals. A new method was developed, with a more comprehensive composite score that integrates 5 parameters of bone infection, 4 parameters of bone structural integrity and 4 parameters of bone regeneration. This method was used to evaluate the health state of the infected animals, both before and after osteomyelitis treatment. The results showed that the composite score allows to discern statistically significant differences between treatments that individual evaluations were not able to identify. Despite none of the therapies completely eradicated the infection, it was observed that macroporous materials (CPF and CPFd, the latter loaded with doxycycline hyclate) and intrinsic antimicrobial MPC allowed a better containment of the osteomyelitis. This study provides novel insights to understand the effect of different antimicrobial therapies in vivo, and a promising comprehensive methodology to evaluate the health state of the animals was developed. We expect that the implementation of such methodology could improve the criteria to select a proper antimicrobial therapy.

JTD Keywords: Calcium phosphate cements, Calcium phosphate foams, Drug delivery, In vivo, Magnesium phosphate cements, Osteomyelitis


Martinez-Hernandez, Uriel, Vouloutsi, Vasiliki, Mura, Anna, Mangan, Michael, Asada, Minoru, Prescott, T. J., Verschure, P., (2019). Biomimetic and Biohybrid Systems 8th International Conference, Living Machines 2019, Nara, Japan, July 9–12, 2019, Proceedings , Springer, Cham (Lausanne, Switzerland) 11556, 1-384

This book constitutes the proceedings of the 8th International Conference on Biomimetic and Biohybrid Systems, Living Machines 2019, held in Nara, Japan, in July 2019. The 26 full and 16 short papers presented in this volume were carefully reviewed and selected from 45 submissions. They deal with research on novel life-like technologies inspired by the scientific investigation of biological systems, biomimetics, and research that seeks to interface biological and artificial systems to create biohybrid systems.

JTD Keywords: Artificial intelligence, Biomimetics, Computer architecture, Human robot interaction, Human-Computer Interaction (HCI), Humanoid robot, Image processing, Learning algorithms, Mobile robots, Multipurpose robots, Neural networks, Quadruped robots, Reinforcement learning, Robot learning, Robotics, Robots, Sensor, Sensors, Swarm robotics, User interfaces


Puigbò, J. Y., Arsiwalla, X. D., Verschure, P., (2018). Challenges of machine learning for living machines Biomimetic and Biohybrid Systems 7th International Conference, Living Machines 2018 (Lecture Notes in Computer Science) , Springer International Publishing (Paris, France) 10928, 382-386

Machine Learning algorithms (and in particular Reinforcement Learning (RL)) have proved very successful in recent years. These have managed to achieve super-human performance in many different tasks, from video-games to board-games and complex cognitive tasks such as path-planning or Theory of Mind (ToM) on artificial agents. Nonetheless, this super-human performance is also super-artificial. Despite some metrics are better than what a human can achieve (i.e. cumulative reward), in less common metrics (i.e. time to learning asymptote) the performance is significantly worse. Moreover, the means by which those are achieved fail to extend our understanding of the human or mammal brain. Moreover, most approaches used are based on black-box optimization, making any comparison beyond performance (e.g. at the architectural level) difficult. In this position paper, we review the origins of reinforcement learning and propose its extension with models of learning derived from fear and avoidance behaviors. We argue that avoidance-based mechanisms are required when training on embodied, situated systems to ensure fast and safe convergence and potentially overcome some of the current limitations of the RL paradigm.

JTD Keywords: Avoidance, Neural networks, Reinforcement learning


Herreros, I., (2018). Learning and control Living machines: A handbook of research in biomimetics and biohybrid systems (ed. Prescott, T. J., Lepora, Nathan, Verschure, P.), Oxford Scholarship (Oxford, UK) , 239-255

This chapter discusses basic concepts from control theory and machine learning to facilitate a formal understanding of animal learning and motor control. It first distinguishes between feedback and feed-forward control strategies, and later introduces the classification of machine learning applications into supervised, unsupervised, and reinforcement learning problems. Next, it links these concepts with their counterparts in the domain of the psychology of animal learning, highlighting the analogies between supervised learning and classical conditioning, reinforcement learning and operant conditioning, and between unsupervised and perceptual learning. Additionally, it interprets innate and acquired actions from the standpoint of feedback vs anticipatory and adaptive control. Finally, it argues how this framework of translating knowledge between formal and biological disciplines can serve us to not only structure and advance our understanding of brain function but also enrich engineering solutions at the level of robot learning and control with insights coming from biology.

JTD Keywords: Feedback control, Feed-forward control, Supervised learning, Unsupervised learning, Reinforcement, Learning, Classical conditioning, Operant conditioning, Reflex, Anticipatory reflex


Freire, I. T., Arsiwalla, X. D., Puigbò, J. Y., Verschure, P., (2018). Limits of multi-agent predictive models in the formation of social conventions Frontiers in Artificial Intelligence and Applications (ed. Falomir, Z., Gibert, K., Plaza, E.), IOS Press (Amsterdam, The Netherlands) Volume 308: Artificial Intelligence Research and Development, 297-301

A major challenge in cognitive science and AI is to understand how intelligent agents might be able to predict mental states of other agents during complex social interactions. What are the computational principles of such a Theory of Mind (ToM)? In previous work, we have investigated hypotheses of how the human brain might realize a ToM of other agents in a multi-agent social scenario. In particular, we have proposed control-based cognitive architectures to predict the model of other agents in a game-theoretic task (Battle of the Exes). Our multi-layer architecture implements top-down predictions from adaptive to reactive layers of control and bottom-up error feedback from reactive to adaptive layers. We tested cooperative and competitive strategies among different multi-agent models, demonstrating that while pure RL leads to reasonable efficiency and fairness in social interactions, there are other architectures that can perform better in specific circumstances. However, we found that even the best predictive models fall short of human data in terms of stability of social convention formation. In order to explain this gap between humans and predictive AI agents, in this work we propose introducing the notion of trust in the form of mutual agreements between agents that might enhance stability in the formation of conventions such as turn-taking.

JTD Keywords: Cognitive Architectures, Game Theory, Multi-Agent Models, Reinforcement Learning, Theory of Mind


O'Neill, R., McCarthy, H. O., Montufar, E. B., Ginebra, M. P., Wilson, D. I., Lennon, A., Dunne, N., (2017). Critical review: Injectability of calcium phosphate pastes and cements Acta Biomaterialia 50, 1-19

Calcium phosphate cements (CPC) have seen clinical success in many dental and orthopaedic applications in recent years. The properties of CPC essential for clinical success are reviewed in this article, which includes properties of the set cement (e.g. bioresorbability, biocompatibility, porosity and mechanical properties) and unset cement (e.g. setting time, cohesion, flow properties and ease of delivery to the surgical site). Emphasis is on the delivery of calcium phosphate (CaP) pastes and CPC, in particular the occurrence of separation of the liquid and solid components of the pastes and cements during injection; and established methods to reduce this phase separation. In addition a review of phase separation mechanisms observed during the extrusion of other biphasic paste systems and the theoretical models used to describe these mechanisms are discussed. Statement of Significance Occurrence of phase separation of calcium phosphate pastes and cements during injection limits their full exploitation as a bone substitute in minimally invasive surgical applications. Due to lack of theoretical understanding of the phase separation mechanism(s), optimisation of an injectable CPC that satisfies clinical requirements has proven difficult. However, phase separation of pastes during delivery has been the focus across several research fields. Therefore in addition to a review of methods to reduce phase separation of CPC and the associated constraints, a review of phase separation mechanisms observed during extrusion of other pastes and the theoretical models used to describe these mechanisms is presented. It is anticipated this review will benefit future attempts to develop injectable calcium phosphate based systems.

JTD Keywords: Bone cements, Calcium phosphates, Injectability, Material properties, Phase separation


Maazouz, Y., Montufar, E. B., Malbert, J., Espanol, M., Ginebra, M. P., (2017). Self-hardening and thermoresponsive alpha tricalcium phosphate/pluronic pastes Acta Biomaterialia 49, 563-574

Although calcium phosphate cements (CPCs) are used for bone regeneration in a wide range of clinical applications, various physicochemical phenomena are known to hinder their potential use in minimally invasive surgery or in highly vascularized surgical sites, mainly because of their lack of injectability or their low washout resistance. The present work shows that the combination of CPCs with an inverse-thermoresponsive hydrogel is a good strategy for finely tuning the cohesive and rheological properties of CPCs to achieve clinical acceptable injectability to prevent phase separation during implantation and cohesion to avoid washout of the paste. The thermoresponsive CPC developed combines alpha-tricalcium phosphate with an aqueous solution of pluronic F127, which exhibits an inverse thermoresponsive behaviour, with a gelling transformation at around body temperature. These novel CPCs exhibited temperature-dependent properties. Addition of the polymer enhanced the injectability of the paste, even at a low liquid-to-powder ratio, and allowed the rheological properties of the cement to be tuned, with the injection force decreasing with the temperature of the paste. Moreover, the cohesion of the paste was also temperature-dependent and increased as the temperature of the host medium increased due to gelling induced in the paste. The thermoresponsive cement exhibited excellent cohesion and clinically acceptable setting times at 37 °C, irrespective of the initial temperature of the paste. The addition of pluronic F127 slightly delayed the setting reaction in the early stages but did not hinder the full transformation to calcium-deficient hydroxyapatite. Moreover, the frozen storage of premixed thermoresponsive cement pastes was explored, the main physicochemical properties of the cements being maintained upon thawing, even after 18 months of frozen storage. This avoids the need to mix the cement in the operating theatre and allows its use off-the-shelf. The reverse thermoresponsive cements studied herein open up new perspectives in the surgical field, where the sequential gelling/hardening of these novel cements could allow for a better and safer clinical application. Statement of Significance: Calcium phosphate cements are attractive bone substitutes due to their similarity to the bone mineral phase. Although they can be injectable, cohesion and stability of the paste are crucial in terms of performance and safety. A common strategy is the combination with hydrogels. However, this often results in a decrease of viscosity with increasing temperature, which can lead to extravasation and particle leakage from the bone defect. The preferred evolution would be the opposite: a low viscosity would enhance mixing and injection, and an instantaneous increase of viscosity after injection would ensure washout resistance to the blood flow. Here we develop for the first time a calcium phosphate cement exhibiting reverse thermoresponsive properties using a poloxamer featuring inverse thermal gelling.

JTD Keywords: Calcium phosphate cement, Cohesion, Hydroxyapatite, Injectability, Pluronic, Thermoresponsive


Giannotti, M. I., Abasolo, Ibane, Oliva, Mireia, Andrade, Fernanda, García-Aranda, Natalia, Melgarejo, Marta, Pulido, Daniel, Corchero, José Luis, Fernández, Yolanda, Villaverde, Antonio, Royo, Miriam, Garcia-Parajo, Maria F., Sanz, Fausto, Schwartz Jr, Simó, (2016). Highly versatile polyelectrolyte complexes for improving the enzyme replacement therapy of lysosomal storage disorders ACS Applied Materials & Interfaces 8, (39), 25741–25752

Lysosomal storage disorders are currently treated by enzyme replacement therapy (ERT) through the direct administration of the unprotected recombinant protein to the patients. Herein we present an ionically cross-linked polyelectrolyte complex (PEC) composed of trimethyl chitosan (TMC) and α-galactosidase A (GLA), the defective enzyme in Fabry disease, with the capability of directly targeting endothelial cells by incorporating peptide ligands containing the RGD sequence. We assessed the physicochemical properties, cytotoxicity, and hemocompatibility of RGD-targeted and untargeted PECs, the uptake by endothelial cells and the intracellular activity of PECs in cell culture models of Fabry disease. Moreover, we also explored the effect of different freeze-drying procedures in the overall activity of the PECs. Our results indicate that the use of integrin-binding RGD moiety within the PEC increases their uptake and the efficacy of the GLA enzyme, while the freeze-drying allows the activity of the therapeutic protein to remain intact. Overall, these results highlight the potential of TMC-based PECs as a highly versatile and feasible drug delivery system for improving the ERT of lysosomal storage disorders.

JTD Keywords: Enzyme replacement therapy, Fabry disease, Lysosomal delivery, Nanomedicine, Polyelectrolyte complexes, Trimethyl chitosan, α-galactosidase A


Kovtun, A., Goeckelmann, M. J., Niclas, A. A., Montufar, E. B., Ginebra, M. P., Planell, J. A., Santin, M., Ignatius, A., (2015). In vivo performance of novel soybean/gelatin-based bioactive and injectable hydroxyapatite foams Acta Biomaterialia Elsevier Ltd 12, (1), 242-249

Major limitations of calcium phosphate cements (CPCs) are their relatively slow degradation rate and the lack of macropores allowing the ingrowth of bone tissue. The development of self-setting cement foams has been proposed as a suitable strategy to overcome these limitations. In previous work we developed a gelatine-based hydroxyapatite foam (G-foam), which exhibited good injectability and cohesion, interconnected porosity and good biocompatibility in vitro. In the present study we evaluated the in vivo performance of the G-foam. Furthermore, we investigated whether enrichment of the foam with soybean extract (SG-foam) increased its bioactivity. G-foam, SG-foam and non-foamed CPC were implanted in a critical-size bone defect in the distal femoral condyle of New Zealand white rabbits. Bone formation and degradation of the materials were investigated after 4, 12 and 20 weeks using histological and biomechanical methods. The foams maintained their macroporosity after injection and setting in vivo. Compared to non-foamed CPC, cellular degradation of the foams was considerably increased and accompanied by new bone formation. The additional functionalization with soybean extract in the SG-foam slightly reduced the degradation rate and positively influenced bone formation in the defect. Furthermore, both foams exhibited excellent biocompatibility, implying that these novel materials may be promising for clinical application in non-loaded bone defects.

JTD Keywords: Bone regeneration, Calcium phosphate cement, Gelatine, Rabbit model, Soybean


Castaño, Oscar, Planell, Josep A., (2014). Cements Bio-Ceramics with Clinical Applications (ed. Vallet-Regí, M.), John Wiley & Sons, Ltd (Chichester, UK) , 193-247

Calcium phosphate cements (CPCs) were meant to produce hydroxyapatite (HA), which is the calcium phosphate that usually results when the cements are mixed with or immersed in aqueous media. The golden age of CPCs was in the late 1990s and the beginning of the 21st century, when they were presented as promising bone substitutes and drug delivery systems. The different reactions that take part in the cement self-setting process depend on many experimental factors – the composition of the cement, the stability of the different components, pH, liquid-to-powder ratio (LPR), and temperature, among others. CPCs have demonstrated fair efficiency for bone regeneration. Cements have gradually been embraced in the wider field of composites by hybridizing their compositions in order that they may adapt to the new trends.

JTD Keywords: Calcium phosphate cements (CPCs), Cements, Hydroxyapatite (HA), Liquid-to-powder ratio (LPR)


Montufar, E. B., Maazouz, Y., Ginebra, M. P., (2013). Relevance of the setting reaction to the injectability of tricalcium phosphate pastes Acta Biomaterialia 9, (4), 6188-6198

The aim of the present work was to analyze the influence of the setting reaction on the injectability of tricalcium phosphate (TCP) pastes. Even if the injection was performed early after mixing powder and liquid, powder reactivity was shown to play a significant role in the injectability of TCP pastes. Significant differences were observed between the injection behavior of non-hardening β-TCP pastes and that of self-hardening α-TCP pastes. The differences were more marked at low liquid-to-powder ratios, using fine powders and injecting through thin needles. α-TCP was, in general, less injectable than β-TCP and required higher injection loads. Moreover, clogging was identified as a mechanism hindering or even preventing injectability, different and clearly distinguishable from the filter-pressing phenomenon. α-TCP pastes presented transient clogging episodes, which were not observed in β-TCP pastes with equivalent particle size distribution. Different parameters affecting powder reactivity were also shown to affect paste injectability. Thus, whereas powder calcination resulted in an increased injectability due to lower particle reactivity, the addition of setting accelerants, such as hydroxyapatite nanoparticles, tended to reduce the injectability of the TCP pastes, especially if adjoined simultaneously with a Na2HPO4 solution. Although, as a general trend, faster-setting pastes were less injectable, some exceptions to this rule were found. For example, whereas in the absence of setting accelerants fine TCP powders were more injectable than the coarse ones, in spite of their shorter setting times, this trend was inverted when setting accelerants were added, and coarse powders were more injectable than the fine ones.

JTD Keywords: Calcium phosphate cement, Hydroxyapatite, Injectability, Setting reaction, Tricalcium phosphate


Perez, R. A., Altankov, G., Jorge-Herrero, E., Ginebra, M. P., (2013). Micro- and nanostructured hydroxyapatite-collagen microcarriers for bone tissue-engineering applications Journal of Tissue Engineering and Regenerative Medicine 7, (5), 353-361

Novel hydroxyapatite (HA)-collagen microcarriers (MCs) with different micro/nanostructures were developed for bone tissue-engineering applications. The MCs were fabricated via calcium phosphate cement (CPC) emulsion in oil. Collagen incorporation in the liquid phase of the CPC resulted in higher MC sphericity. The MCs consisted of a porous network of entangled hydroxyapatite crystals, formed as a result of the CPC setting reaction. The addition of collagen to the MCs, even in an amount as small as 0.8wt%, resulted in an improved interaction with osteoblast-like Saos-2 cells. The micro/nanostructure and the surface texture of the MCs were further tailored by modifying the initial particle size of the CPC. A synergistic effect between the presence of collagen and the nanosized HA crystals was found, resulting in significantly enhanced alkaline phosphatase activity on the collagen-containing nanosized HA MCs.

JTD Keywords: Bone regeneration, Calcium phosphate cement, Cell response, Collagen, Hydroxyapatite, Microcarrier


Ginebra, M. P., Canal, C., Espanol, M., Pastorino, D., Montufar, E. B., (2012). Calcium phosphate cements as drug delivery materials Advanced Drug Delivery Reviews 64, (12), 1090-1110

Calcium phosphate cements are used as synthetic bone grafts, with several advantages, such as their osteoconductivity and injectability. Moreover, their low-temperature setting reaction and intrinsic porosity allow for the incorporation of drugs and active principles in the material. It is the aim of the present work to: a) provide an overview of the different approaches taken in the application of calcium phosphate cements for drug delivery in the skeletal system, and b) identify the most significant achievements. The drugs or active principles associated to calcium phosphate cements are classified in three groups, i) low molecular weight drugs; ii) high molecular weight biomolecules; and iii) ions.

JTD Keywords: Antibiotic, Bioceramic, Biomaterial, Bone regeneration, Calcium phosphate cement, Ceramic matrix, Growth factor, Hydroxyapatite, Ions, Protein


Gustavsson, J., Ginebra, M. P., Planell, J., Engel, E., (2012). Electrochemical microelectrodes for improved spatial and temporal characterization of aqueous environments around calcium phosphate cements Acta Biomaterialia 8, (1), 386-393

Calcium phosphate compounds can potentially influence cellular fate through ionic substitutions. However, to be able to turn such solution-mediated processes into successful directors of cellular response, a perfect understanding of the material-induced chemical reactions in situ is required. We therefore report on the application of home-made electrochemical microelectrodes, tested as pH and chloride sensors, for precise spatial and temporal characterization of different aqueous environments around calcium phosphate-based biomaterials prepared from α-tricalcium phosphate using clinically relevant liquid to powder ratios. The small size of the electrodes allowed for online measurements in traditionally inaccessible in vitro environments, such as the immediate material-liquid interface and the interior of curing bone cement. The kinetic data obtained has been compared to theoretical sorption models, confirming that the proposed setup can provide key information for improved understanding of the biochemical environment imposed by chemically reactive biomaterials.

JTD Keywords: Calcium phosphate, Hydroxyapatite, Ion sorption, Iridium oxide, Sensors, Animals, Biocompatible Materials, Bone Cements, Calcium Phosphates, Cells, Cultured, Chlorides, Electrochemical Techniques, Gold, Hydrogen-Ion Concentration, Hydroxyapatites, Iridium, Materials Testing, Microelectrodes, Powders, Silver, Silver Compounds, Water


Montufar, Edgar B., Traykova, Tania, Planell, Josep A., Ginebra, Maria-Pau, (2011). Comparison of a low molecular weight and a macromolecular surfactant as foaming agents for injectable self setting hydroxyapatite foams: Polysorbate 80 versus gelatine Materials Science and Engineering: C 31, (7), 1498-1504

Hydroxyapatite foams are potential synthetic bone grafting materials or scaffolds for bone tissue engineering. A novel method to obtain injectable hydroxyapatite foams consists in foaming the liquid phase of a calcium phosphate cement. In this process, the cement powder is incorporated into a liquid foam, which acts as a template for macroporosity. After setting, the cement hardens maintaining the macroporous structure of the foam. In this study a low molecular weight surfactant, Polysorbate 80, and a protein, gelatine, were compared as foaming agents of a calcium phosphate cement. The foamability of Polysorbate 80 was greater than that of gelatine, resulting in higher macroporosity in the set hydroxyapatite foam and higher macropore interconnectivity. Gelatine produced less interconnected foams, especially at high concentrations, due to a higher liquid foam stability. However it increased the injectability and cohesion of the foamed paste, and enhanced osteoblastic-like cell adhesion, all of them important properties for bone grafting materials.

JTD Keywords: Hydroxyapatite, Porosity, Calcium phosphate cement, Scaffolds, Foaming, Bone regeneration


Perut, F., Montufar, E. B., Ciapetti, G., Santin, M., Salvage, J., Traykova, T., Planell, J. A., Ginebra, M. P., Baldini, N., (2011). Novel soybean/gelatine-based bioactive and injectable hydroxyapatite foam: Material properties and cell response Acta Biomaterialia 7, (4), 1780-1787

Despite their known osteoconductivity, clinical use of calcium phosphate cements is limited both by their relatively slow rate of resorption and by rheological properties incompatible with injectability. Bone in-growth and material resorption have been improved by the development of porous calcium phosphate cements. However, injectable formulations have so far only been obtained through the addition of relatively toxic surfactants. The present work describes the response of osteoblasts to a novel injectable foamed bone cement based on a composite formulation including the bioactive foaming agents soybean and gelatine. The foaming properties of both defatted soybean and gelatine gels were exploited to develop a self-hardening soy/gelatine/hydroxyapatite composite foam able to retain porosity upon injection. After setting, the foamed paste produced a calcium-deficient hydroxyapatite scaffold, showing good injectability and cohesion as well as interconnected porosity after injection. The intrinsic bioactivity of soybean and gelatine was shown to favour osteoblast adhesion and growth. These findings suggest that injectable, porous and bioactive calcium phosphate cements can be produced for bone regeneration through minimally invasive surgery.

JTD Keywords: Calcium phosphate cement, Composite, Bone tissue engineering, Cell viability, Bioactivity


Montufar, E. B., Traykova, T., Gil, C., Harr, I., Almirall, A., Aguirre, A., Engel, E., Planell, J. A., Ginebra, M. P., (2010). Foamed surfactant solution as a template for self-setting injectable hydroxyapatite scaffolds for bone regeneration Acta Biomaterialia 6, (3), 876-885

The application of minimally invasive surgical techniques in the field of orthopaedic surgery has created a growing need for new injectable synthetic materials that can be used for bone grafting In this work a novel fully synthetic injectable calcium phosphate foam was developed by mixing alpha-tricalcium phosphate (alpha-TCP) powder with a foamed polysorbate 80 solution Polysorbate 80 is a non-ionic surfactant approved for parenteral applications The foam was able to retain the porous structure after injection provided that the foamed paste was injected shortly after mixing (typically 2 5 min), and set through the hydrolysis of alpha-TCP to a calcium-deficient hydroxyapatite, thus producing a hydroxyapatite solid foam in situ The effect of different processing parameters on the porosity. microstructure, injectability and mechanical properties of the hydroxyapatite foams was analysed, and the ability of the pre-set foam to support osteoblastic-like cell proliferation and differentiation was assessed. Interestingly, the concentration of surfactant needed to obtain the foams was lower than that considered safe in drug formulations for parenteral administration The possibility of combining bioactivity, injectability, macroporosity and self-setting ability in a single fully synthetic material represents a step forward in the design of new materials for bone regeneration compatible with minimally invasive surgical techniques.

JTD Keywords: Calcium phosphate cement, Hydroxyapatite foam, Scaffold, Surfactant, Injectable material


Ginebra, M. P., Espanol, M., Montufar, E. B., Perez, R. A., Mestres, G., (2010). New processing approaches in calcium phosphate cements and their applications in regenerative medicine Acta Biomaterialia 6, (8), 2863-2873

The key feature of calcium phosphate cements (CPCs) lies in the setting reaction triggered by mixing one or more solid calcium phosphate salts with an aqueous solution. Upon mixture, the reaction takes place through a dissolution-precipitation process which is macroscopically observed by a gradual hardening of the cement paste. The precipitation of hydroxyapatite nanocrystals at body or room temperature, and the fact that those materials can be used as self-setting pastes, have for many years been the most attractive features of CPCs. However, the need to develop materials able to sustain bone tissue ingrowth and be capable of delivering drugs and bioactive molecules, together with the continuous requirement from surgeons to develop more easily handling cements, has pushed the development of new processing routes that can accommodate all these requirements, taking advantage of the possibility of manipulating the self-setting CPC paste. It is the goal of this paper to provide a brief overview of the new processing developments in the area of CPCs and to identify the most significant achievements.

JTD Keywords: Bone regeneration, Calcium phosphate cements, Granules, Microcarriers, Scaffolds


Montufar, E. B., Traykova, T., Schacht, E., Ambrosio, L., Santin, M., Planell, J. A., Ginebra, M. P., (2009). Self-hardening calcium deficient hydroxyapatite/gelatine foams for bone regeneration Journal of Materials Science-Materials in Medicine 22nd European Conference on Biomaterials , Springer Netherlands (Lausanne, Switzerland) 21, (3), 863-869

In this work gelatine was used as multifunctional additive to obtain injectable self-setting hydroxyapatite/gelatine composite foams for bone regeneration. The foaming and colloidal stabilization properties of gelatine are well known in food and pharmaceutical applications. Solid foams were obtained by foaming liquid gelatine solutions at 50A degrees C, followed by mixing them with a cement powder consisting of alpha tricalcium phosphate. Gelatine addition improved the cohesion and injectability of the cement paste. After setting the foamed paste transformed into a calcium deficient hydroxyapatite. The final porosity, pore interconnectivity and pore size were modulated by modifying the gelatine content in the liquid phase.

JTD Keywords: Phosphate cement, Gelatin, Behavior


Mateos-Timoneda, M. A., (2009). Polymers for bone repair Bone repair biomaterials (ed. Planell, J. A., Lacroix, D., Best, S., Merolli, A.), Woodhead (Cambridge, UK) , 3-24

A fundamental aspect of the rapidly expanding medical care sector, bone repair continues to benefit from emerging technological developments. This text provides researchers and students with a comprehensive review of the materials science and engineering principles behind these developments. The first part reviews the fundamentals of bone repair and regeneration. Further chapters discuss the science and properties of biomaterials used in bone repair, including both metals and biocomposites. Final chapters analyze device considerations such as implant lifetime and failure, and discuss potential applications, as well as the ethical issues that continually confront researchers and clinicians.

JTD Keywords: Ultra high molecular weight polyethylene (UHMWPE), Acrylic polymers as bone cement, Biodegradable polymers


Engel, E., Del Valle, S., Aparicio, C., Altankov, G., Asin, L., Planell, J. A., Ginebra, M. P., (2008). Discerning the role of topography and ion exchange in cell response of bioactive tissue engineering scaffolds Tissue Engineering Part A , 14, (8), 1341-1351

Surface topography is known to have an influence on osteoblast activity. However, in the case of bioactive materials, topographical changes can affect also ion exchange properties. This makes the problem more complex, since it is often difficult to separate the strictly topographical effects from the effects of ionic fluctuations in the medium. The scope of this paper is to analyze the simultaneous effect of topography and topography-mediated ion exchange on the initial cellular behavior of osteoblastic-like cells cultured on bioactive tissue engineering substrates. Two apatitic substrates with identical chemical composition but different micro/nanostructural features were obtained by low-temperature setting of a calcium phosphate cement. MG63 osteoblastic-like cells were cultured either in direct contact with the substrates or with their extracts. A strong and permanent decrease of calcium concentration in the culture medium, dependent on substrate topography, was detected. A major effect of the substrate microstructure on cell proliferation was observed, explained in part by the topography-mediated ion exchange, but not specifically by the ionic Ca(2+) fluctuations. Cell differentiation was strongly enhanced when cells were cultured on the finer substrate. This effect was not explained by the chemical modification of the medium, but rather suggested a strictly topographical effect.

JTD Keywords: Alkaline Phosphatase/metabolism, Bone Cements/pharmacology, Calcium/metabolism, Calcium Phosphates/pharmacology, Cell Adhesion/drug effects, Cell Differentiation/drug effects, Cell Proliferation/drug effects, Cell Shape/drug effects, Cells, Cultured, Culture Media, Durapatite/pharmacology, Humans, Interferometry, Ion Exchange, Materials Testing, Osteoblasts/ cytology/drug effects/enzymology/ultrastructure, Phosphorus/metabolism, Powders, Tissue Engineering, Tissue Scaffolds


Sanzana, E. S., Navarro, M., Macule, F., Suso, S., Planell, J. A., Ginebra, M. P., (2008). Of the in vivo behavior of calcium phosphate cements and glasses as bone substitutes Acta Biomaterialia 4, (6), 1924-1933

The use of injectable self-setting calcium phosphate cements or soluble glass granules represent two different strategies for bone regeneration, each with distinct advantages and potential applications. This study compares the in vivo behavior of two calcium phosphate cements and two phosphate glasses with different composition, microstructure and solubility, using autologous bone as a control, in a rabbit model. The implanted materials were alpha-tricalcium phosphate cement (cement H), calcium sodium potassium phosphate cement (cement R), and two phosphate glasses in the P2O5-CaO-Na2O and P2O5-CaO-Na2O-TiO2 systems. The four materials were osteoconductive, biocompatible and biodegradable. Radiological and histological studies demonstrated correct osteointegration and substitution of the implants by new bone. The reactivity of the different materials, which depends on their solubility, porosity and specific surface area, affected the resorption rate and bone formation mainly during the early stages of implantation, although this effect was weak. Thus, at 4 weeks the degradation was slightly higher in cements than in glasses, especially for cement R. However, after 12 weeks of implantation all materials showed a similar degradation degree and promoted bone neoformation equivalent to that of the control group.

JTD Keywords: Calcium phosphates, Calcium phosphate cements, Phosphate glasses, Bone grafts, Bone regenerations


Montufar, E. B., Gil, C., Traykova, T., Ginebra, M. P., Planell, J., (2008). Foamed beta-tricalcium phosphate scaffolds Bioceramics: Key Engineering Materials 20th International Symposium on Ceramics in Medicine (ed. Daculsi, G., Layrolle, P.), Trans Tech Publications Ltd (Nantes, France) 20, 323-326

The design and processing of 3D macroporous bioactive scaffolds is one of the milestones for the progress of bone tissue engineering and bone regeneration. Calcium phosphate based ceramics are among the most suitable materials, due to their similarity to the bone mineral. Specifically, beta-tricalcium phosphate (beta-TCP) is known to be a resorbable and bioactive material, with well established applications as bone regeneration material. The aim of this work is to explore a new OF route to obtain beta-TCP macroporous scaffolds starting from calcium phosphate cements. To this end foamed calcium phosphate cement.. composed of alpha tricalcium phosphate as starting powder was used as initial material. The set foamed structures, made of calcium deficient hydroxyapatite (CDHA) were sintered to obtain the final beta-TCP macroporous architecture. The interconnected macroporosity was maintained.. whereas the porosity in the nanometric range was strongly reduced by the sintering process. The sintering produced also an increase in the mechanical properties of the scaffold.

JTD Keywords: Calcium-phosphate ceramics, Cements, Scaffolds, Foams, Macroporous, Tissue engineering