DONATE

Staff member

María García Díaz

Staff member publications

Català, DB, Comelles, J, Abad, A, García-Díaz, M, Martínez, E, (2024). Designing in vitro platforms to study transendothelial T cell migration in colorectal cancer (2156 – P3.13.14) European Journal Of Immunology 54, 1746-1746

Vera, D, García-Díaz, M, Torras, N, Castillo, O, Illa, X, Villa, R, Alvarez, M, Martinez, E, (2024). A 3D bioprinted hydrogel gut-on-chip with integrated electrodes for transepithelial electrical resistance (TEER) measurements Biofabrication 16, 035008

Conventional gut-on-chip (GOC) models typically represent the epithelial layer of the gut tissue, neglecting other important components such as the stromal compartment and the extracellular matrix (ECM) that play crucial roles in maintaining intestinal barrier integrity and function. These models often employ hard, flat porous membranes for cell culture, thus failing to recapitulate the soft environment and complex 3D architecture of the intestinal mucosa. Alternatively, hydrogels have been recently introduced in GOCs as ECM analogs to support the co-culture of intestinal cells in in vivo-like configurations, and thus opening new opportunities in the organ-on-chip field. In this work, we present an innovative GOC device that includes a 3D bioprinted hydrogel channel replicating the intestinal villi architecture containing both the epithelial and stromal compartments of the gut mucosa. The bioprinted hydrogels successfully support both the encapsulation of fibroblasts and their co-culture with intestinal epithelial cells under physiological flow conditions. Moreover, we successfully integrated electrodes into the microfluidic system to monitor the barrier formation in real time via transepithelial electrical resistance measurements.

JTD Keywords: A-chip, Bioprinted, Caco-2, Cells, Culture, Gut-on-a-chip, Hydrogels, Impedance spectroscopy, Integrated electrodes, Intestinal barrier, Intestinal mucos, Model


Torras, N, Zabalo, J, Abril, E, Carré, A, García-Díaz, M, Martínez, E, (2023). A bioprinted 3D gut model with crypt-villus structures to mimic the intestinal epithelial-stromal microenvironment Biomaterials Advances 153, 213534

The intestine is a complex tissue with a characteristic three-dimensional (3D) crypt-villus architecture, which plays a key role in the intestinal function. This function is also regulated by the intestinal stroma that actively supports the intestinal epithelium, maintaining the homeostasis of the tissue. Efforts to account for the 3D complex structure of the intestinal tissue have been focused mainly in mimicking the epithelial barrier, while solutions to include the stromal compartment are scarce and unpractical to be used in routine experiments. Here we demonstrate that by employing an optimized bioink formulation and the suitable printing parameters it is possible to produce fibroblast-laden crypt-villus structures by means of digital light projection stereolithography (DLP-SLA). This process provides excellent cell viability, accurate spatial resolution, and high printing throughput, resulting in a robust biofabrication approach that yields functional gut mucosa tissues compatible with conventional testing techniques.Copyright © 2023 Elsevier B.V. All rights reserved.

JTD Keywords: 3d microstructure, barrier, cells, epithelial-stromal interactions, gelma-pegda soft hydrogels, growth, hydrogel, intestinal mucosa model, methacrylamide, microfabrication, proliferation, scaffold, stereolithography, 3d bioprinting, 3d microstructure, Epithelial-stromal interactions, Fibroblasts, Gelma-pegda soft hydrogels, Intestinal mucosa model


Macedo, MH, Torras, N, García-Díaz, M, Barrias, C, Sarmento, B, Martínez, E, (2023). The shape of our gut: Dissecting its impact on drug absorption in a 3D bioprinted intestinal model Biomaterials Advances 153, 213564

The small intestine is a complex organ with a characteristic architecture and a major site for drug and nutrient absorption. The three-dimensional (3D) topography organized in finger-like protrusions called villi increases surface area remarkably, granting a more efficient absorption process. The intestinal mucosa, where this process occurs, is a multilayered and multicell-type tissue barrier. In vitro intestinal models are routinely used to study different physiological and pathological processes in the gut, including compound absorption. Still, standard models are typically two-dimensional (2D) and represent only the epithelial barrier, lacking the cues offered by the 3D architecture and the stromal components present in vivo, often leading to inaccurate results. In this work, we studied the impact of the 3D architecture of the gut on drug transport using a bioprinted 3D model of the intestinal mucosa containing both the epithelial and the stromal compartments. Human intestinal fibroblasts were embedded in a previously optimized hydrogel bioink, and enterocytes and goblet cells were seeded on top to mimic the intestinal mucosa. The embedded fibroblasts thrived inside the hydrogel, remodeling the surrounding extracellular matrix. The epithelial cells fully covered the hydrogel scaffolds and formed a uniform cell layer with barrier properties close to in vivo. In particular, the villus-like model revealed overall increased permeability compared to a flat counterpart composed by the same hydrogel and cells. In addition, the efflux activity of the P-glycoprotein (P-gp) transporter was significantly reduced in the villus-like scaffold compared to a flat model, and the genetic expression of other drugs transporters was, in general, more relevant in the villus-like model. Globally, this study corroborates that the presence of the 3D architecture promotes a more physiological differentiation of the epithelial barrier, providing more accurate data on drug absorbance measurements.Copyright © 2023. Published by Elsevier B.V.

JTD Keywords: 3d architecture, alkaline-phosphatase, caco-2 cells, culture, drug development, efflux proteins, gene-expression, human-colon, intestinal absorption, intestinal models, microenvironment, paracellular transport, permeability, photopolymerization, villi, 3d architecture, 3d bioprinting, Drug development, In-vitro, Intestinal absorption, Intestinal models, Photopolymerization, Villi


García-Díaz, M, Cendra, MD, Alonso-Roman, R, Urdániz, M, Torrents, E, Martínez, E, (2022). Mimicking the Intestinal Host–Pathogen Interactions in a 3D In Vitro Model: The Role of the Mucus Layer Pharmaceutics 14, 1552

The intestinal mucus lines the luminal surface of the intestinal epithelium. This mucus is a dynamic semipermeable barrier and one of the first-line defense mechanisms against the outside environment, protecting the body against chemical, mechanical, or biological external insults. At the same time, the intestinal mucus accommodates the resident microbiota, providing nutrients and attachment sites, and therefore playing an essential role in the host–pathogen interactions and gut homeostasis. Underneath this mucus layer, the intestinal epithelium is organized into finger-like protrusions called villi and invaginations called crypts. This characteristic 3D architecture is known to influence the epithelial cell differentiation and function. However, when modelling in vitro the intestinal host–pathogen interactions, these two essential features, the intestinal mucus and the 3D topography are often not represented, thus limiting the relevance of the models. Here we present an in vitro model that mimics the small intestinal mucosa and its interactions with intestinal pathogens in a relevant manner, containing the secreted mucus layer and the epithelial barrier in a 3D villus-like hydrogel scaffold. This 3D architecture significantly enhanced the secretion of mucus. In infection with the pathogenic adherent invasive E. coli strain LF82, characteristic of Crohn’s disease, we observed that this secreted mucus promoted the adhesion of the pathogen and at the same time had a protective effect upon its invasion. This pathogenic strain was able to survive inside the epithelial cells and trigger an inflammatory response that was milder when a thick mucus layer was present. Thus, we demonstrated that our model faithfully mimics the key features of the intestinal mucosa necessary to study the interactions with intestinal pathogens.

JTD Keywords: 3d in vitro models, barrier function, bile-salts, cells, drug-delivery, host-pathogen interaction, host–pathogen interaction, hydrogels, ileal mucosa, infection, intestinal models, intestinal mucus, microbiome, patient, responses, 3d in vitro models, Intestinal mucus, Invasive escherichia-coli


Abad, A, Altay, G, Gualda, E, García-Díaz, M, Torras, N, Folch, J, Tosi, S, Férnandez, V, Batlle, E, Loza, P, Martínez, E, (2022). MICROENGINEERED VILLUS-LIKE PEGDA HYDROGELS UNDER SPATIO-BIOCHEMICAL GRADIENTS FOR PRIMARY INTESTINAL EPITHELIUM IN VITRO MODEL (Abstract 874) Tissue Engineering Part a 28, S245-S245

The intestinal epithelium is formed by villi and crypts. Intestinalstem cells (ISCs) located at the crypt base divide giving rise toproliferative cells that migrate up along the villi while differentiating,ultimately dying at the tips of the villi. This homeostasis is tightlycontrolled by biomolecular gradients of EGF, Wnt and BMP sig-naling pathways along the crypt-villus axis1. Intestinal organoids,despite including many physiologically relevant features, are notvalid cultures when access to the lumen is required. Here we present aculture platform that overcomes this limitation while comprising allkey features of the intestinal epithelium: 3D architecture, prolifera-tive and differentiated cell domains, and gradients of ISCs nichebiomolecules.Employing a simple photolithographic technique2, we fabricatedpoly(ethylene) glycol diacrylate (PEGDA) 3D villus-like scaffolds.We developed in silico models to simulate gradients of ISCs nichebiomolecules, we created them through the hydrogels by free diffusionand we characterized them by Light-sheet fluorescence microscopy.Organoid-derived intestinal epithelial cells covered the wholescaffold surface. The gradients profile and composition, constantover time, impacted on cell behavior by modifying the proportionand positioning of the different intestinal epithelial cell types alongthe vertical axis of our scaffold, faithfully recreating in vivo cellcompartmentalization.We have developed an apically accessible and 3D in vitro intes-tinal epithelial model, which bears biomolecular ISC niche gradientsand all relevant epithelial cell types. Therefore, we believe our modelcan be employed in many applications, particularly in the study ofintestinal epithelium biology in physiological and pathologicalconditions.

JTD


Garcia-Diaz, M, Abad, A, Torras, N, Martinez, E, (2022). MIMICKING THE INTESTINAL 3D TOPOGRAPHY WITH PHOTOCROSSLINKED HYDROGEL SCAFFOLDS (Abstract 1198) Tissue Engineering Part a 28, S335-S336

The intestinal epithelium is characterized by a complex micro-scale topography formed by finger-like protrusions called villi andinvaginations called crypts. This organized three-dimensional (3D)architecture together with the soft mechanical properties of the in-testinal tissue are essential for cell behavior and tissue function.However, the experimental in vitro modeling of the delicate intes-tinal architecture is limited due to the difficulty in microfabricatingsoft materials with complex 3D geometries, high aspect ratio andcurvature using efficient and simple methods. In this work, we fab-ricated soft hydrogel scaffolds that accurately mimic the villus andcrypt morphologies of the intestinal epithelium using a simple andmoldless approach (1).We used mixtures of polyethylene glycol diacrylate (PEGDA)and acrylic acid (AA), or PEGDA and gelatin methacryloyl (Gel-MA) to fabricate 3D hydrogels by a single-step photolithographyprocess. Different photomasks were used for the fabrication of themicropillars mimicking the intestinal villi and the crypt-like in-vaginations. The dimensions of the villi and crypts were easilyfine-tuned just by changing the energy dose. The scaffolds weredirectly microfabricated onto permeable membranes, enablingtheir assembly into cell culture inserts. Intestinal epithelial cellslines or organoid-derived primary cells covered the biomimeticscaffolds and form polarized monolayers with proper barrierproperties. The use of PEGDA-GelMA blends also allowed thefabrication of cell-laden scaffolds that mimic the intestinal stromalcompartment.Through these results, we demonstrated that this microfabricationtechnology is a promising tool to faithfully replicate the intestinalmucosa topography with improved performance, while keepingcompatibility with standard cell culture techniques.

JTD


Garcia-Diaz, M, Altay, G, Tosi, S, Martinez, E, (2022). CELL MORPHOLOGICAL RESPONSE TO 3D TOPOGRAPHY AND CURVATURE IN ENGINEERED INTESTINAL IN VITRO MODELS (Abstract 1200) Tissue Engineering Part a 28, S336-S336

Many epithelial tissues have complex three-dimensional (3D)topographies that are inherently curved. Recent advances in mi-crofabrication techniques have allowed the development of so-phisticated in vitro models that replicate this complex architectureof the native tissues. In particular, engineered intestinal tissuesoften use hydrogels to mimic villi structures (1). These finger-likeprotrusions of a few hundred microns in height have a well-definedtopography and curvature. However, the characterization of theselarge tissue engineered constructs at single-cell resolution is tech-nically challenging. Confocal microscopy imaging is limited by thesample thickness, whereas routine histological procedures are notsuitable for high water content samples such as hydrogels. Wedeveloped a novel embedding method that allows for the histo-logical processing of these delicate hydrogel structures (2). Usinglow molecular weight poly(ethylene glycol) diacrylate (PEGDA) asembedding media, we obtained a block that could be further sec-tioned with vibrating microtome or cryotome faithfully preservingthe villi-like structures of the scaffold. We then examined the cellmorphological response to the villus-like microstructures by high-resolution imaging of the cross-sections. We analyzed, in a spatiallyresolved manner, the cellular and nuclear morphology along thevilli. We observed that cell morphological response was highlyinfluenced by the microstructures showing significant differences incell height and shape at different regions of the villi that presenteddistinguished curvatures. These findings, which are in goodagreement with the data reported for in vivo experiments on theintestinal native tissue, highlight the impact of the micron-scaletopography and curvature on epithelial cell behavior.

JTD


Vera, D, García-Díaz, M, Torras, N, Alvarez, M, Villa, R, Martinez, E, (2021). Engineering Tissue Barrier Models on Hydrogel Microfluidic Platforms Acs Applied Materials & Interfaces 13, 13920-13933

Tissue barriers play a crucial role in human physiology by establishing tissue compartmentalization and regulating organ homeostasis. At the interface between the extracellular matrix (ECM) and flowing fluids, epithelial and endothelial barriers are responsible for solute and gas exchange. In the past decade, microfluidic technologies and organ-on-chip devices became popular as in vitro models able to recapitulate these biological barriers. However, in conventional microfluidic devices, cell barriers are primarily grown on hard polymeric membranes within polydimethylsiloxane (PDMS) channels that do not mimic the cell-ECM interactions nor allow the incorporation of other cellular compartments such as stromal tissue or vascular structures. To develop models that accurately account for the different cellular and acellular compartments of tissue barriers, researchers have integrated hydrogels into microfluidic setups for tissue barrier-on-chips, either as cell substrates inside the chip, or as self-contained devices. These biomaterials provide the soft mechanical properties of tissue barriers and allow the embedding of stromal cells. Combining hydrogels with microfluidics technology provides unique opportunities to better recreate in vitro the tissue barrier models including the cellular components and the functionality of the in vivo tissues. Such platforms have the potential of greatly improving the predictive capacities of the in vitro systems in applications such as drug development, or disease modeling. Nevertheless, their development is not without challenges in their microfabrication. In this review, we will discuss the recent advances driving the fabrication of hydrogel microfluidic platforms and their applications in multiple tissue barrier models.

JTD Keywords: hydrogel, microfabrication, microfluidics, organ-on-chip, tissue barrier, Hydrogel, Microfabrication, Microfluidics, Organ-on-chip, Tissue barrier


Fernánez-Majada, V., García-Díaz, María, Torras, N., Raghunath, M., Martínez, Elena, (2020). Editorial: When the shape does matter: Three-dimensional in vitro models of epithelial barriers Frontiers in Bioengineering and Biotechnology 8, 617361

Vila, A., Torras, N., Castaño, Albert G., García-Díaz, María, Comelles, Jordi, Pérez-Berezo, T., Corregidor, C., Castaño, O., Engel, E., Fernández-Majada, Vanesa, Martínez, Elena, (2020). Hydrogel co-networks of gelatine methacrylate and poly(ethylene glycol) diacrylate sustain 3D functional in vitro models of intestinal mucosa Biofabrication 12, 025008

Mounting evidence supports the importance of the intestinal epithelial barrier and its permeability both in physiological and pathological conditions. Conventional in vitro models to evaluate intestinal permeability rely on the formation of tightly packed epithelial monolayers grown on hard substrates. These two-dimensional (2D) models lack the cellular and mechanical components of the non-epithelial compartment of the intestinal barrier, the stroma, which are key contributors to the barrier permeability in vivo. Thus, advanced in vitro models approaching the in vivo tissue composition are fundamental to improve precision in drug absorption predictions, to provide a better understanding of the intestinal biology, and to faithfully represent related diseases. Here, we generate photo-crosslinked gelatine methacrylate (GelMA) - poly(ethylene glycol) diacrylate (PEGDA) hydrogel co-networks that provide the required mechanical and biochemical features to mimic both the epithelial and stromal compartments of the intestinal mucosa, i.e., they are soft, cell adhesive and cell-loading friendly, and suitable for long-term culturing. We show that fibroblasts can be embedded in the GelMA-PEGDA hydrogels while epithelial cells can grow on top to form a mature epithelial monolayer that exhibits barrier properties which closely mimic those of the intestinal barrier in vivo, as shown by the physiologically relevant transepithelial electrical resistance (TEER) and permeability values. The presence of fibroblasts in the artificial stroma compartment accelerates the formation of the epithelial monolayer and boosts the recovery of the epithelial integrity upon temporary barrier disruption, demonstrating that our system is capable of successfully reproducing the interaction between different cellular compartments. As such, our hydrogel co-networks offer a technologically simple yet sophisticated approach to produce functional three-dimensional (3D) in vitro models of epithelial barriers with epithelial and stromal cells arranged in a spatially relevant manner and near-physiological functionality.

JTD


Altay, Gizem, Tosi, Sébastien, García-Díaz, María, Martínez, Elena, (2020). Imaging the cell morphological response to 3D topography and curvature in engineered intestinal tissues Frontiers in Bioengineering and Biotechnology 8, 294

While conventional cell culture methodologies have relied on flat, two-dimensional cell monolayers, three-dimensional engineered tissues are becoming increasingly popular. Often, engineered tissues can mimic the complex architecture of native tissues, leading to advancements in reproducing physiological functional properties. In particular, engineered intestinal tissues often use hydrogels to mimic villi structures. These finger-like protrusions of a few hundred microns in height have a well-defined topography and curvature. Here, we examined the cell morphological response to these villus-like microstructures at single-cell resolution using a novel embedding method that allows for the histological processing of these delicate hydrogel structures. We demonstrated that by using photopolymerisable poly(ethylene) glycol as an embedding medium, the villus-like microstructures were successfully preserved after sectioning with vibratome or cryotome. Moreover, high-resolution imaging of these sections revealed that cell morphology, nuclei orientation, and the expression of epithelial polarization markers were spatially encoded along the vertical axis of the villus-like microstructures and that this cell morphological response was dramatically affected by the substrate curvature. These findings, which are in good agreement with the data reported for in vivo experiments on the native tissue, are likely to be the origin of more physiologically relevant barrier properties of engineered intestinal tissues when compared with standard monolayer cultures. By showcasing this example, we anticipate that the novel histological embedding procedure will have a positive impact on the study of epithelial cell behavior on three-dimensional substrates in both physiological and pathological situations.

JTD Keywords: Hydrogel scaffold, Confocal microscopy, Substrate curvature, Cell morphology, Cell orientation, Histological section, Small intestine, Villus


Castaño, Albert G., García-Díaz, María, Torras, Núria, Altay, Gizem, Comelles, Jordi, Martínez, Elena, (2019). Dynamic photopolymerization produces complex microstructures on hydrogels in a moldless approach to generate a 3D intestinal tissue model Biofabrication 11, (2), 025007

Epithelial tissues contain three-dimensional (3D) complex microtopographies that are essential for proper performance. These microstructures provide cells with the physicochemical cues needed to guide their self-organization into functional tissue structures. However, most in vitro models do not implement these 3D architectural features. The main problem is the availability of simple fabrication techniques that can reproduce the complex geometries found in native tissues on the soft polymeric materials required as cell culture substrates. In this study reaction-diffusion mediated photolithography is used to fabricate 3D microstructures with complex geometries on poly(ethylene glycol)-based hydrogels in a single step and moldless approach. By controlling fabrication parameters such as the oxygen diffusion/depletion timescales, the distance to the light source and the exposure dose, the dimensions and geometry of the microstructures can be well-defined. In addition, copolymerization of poly(ethylene glycol) with acrylic acid improves control of the dynamic reaction-diffusion processes that govern the free-radical polymerization of highly-diluted polymeric solutions. Moreover, acrylic acid allows adjusting the density of cell adhesive ligands while preserving the mechanical properties of the hydrogels. The method proposed is a simple, single-step, and cost-effective strategy for producing models of intestinal epithelium that can be easily integrated into standard cell culture platforms.

JTD


García-Díaz, María, Birch, Ditlev, Wan, Feng, Mørck Nielsen, Hanne, (2018). The role of mucus as an invisible cloak to transepithelial drug delivery by nanoparticles Advanced Drug Delivery Reviews 124, 107-124

Mucosal administration of drugs and drug delivery systems has gained increasing interest. However, nanoparticles intended to protect and deliver drugs to epithelial surfaces require transport through the surface-lining mucus. Translation from bench to bedside is particularly challenging for mucosal administration since a variety of parameters will influence the specific barrier properties of the mucus including the luminal fluids, the microbiota, the mucus composition and clearance rate, and the condition of the underlying epithelia. Besides, after administration, nanoparticles interact with the mucosal components, forming a biomolecular corona that modulates their behavior and fate after mucosal administration. These interactions are greatly influenced by the nanoparticle properties, and therefore different designs and surface-engineering strategies have been proposed. Overall, it is essential to evaluate these biomolecule-nanoparticle interactions by complementary techniques using complex and relevant mucus barrier matrices.

JTD Keywords: Nanoparticle formulation strategies, Corona formation, Digestive tract, Respiratory tract, Luminal content, Methodologies, Analysis


Hortigüela, Verónica, Larrañaga, Enara, Cutrale, Francesco, Seriola', Anna, García-Díaz, María, Lagunas, Anna, Andilla, Jordi, Loza-Alvarez, Pablo, Samitier, Josep, Ojosnegros', Samuel, Martinez, Elena, (2018). Nanopatterns of surface-bound ephrinB1 produce multivalent ligand-receptor interactions that tune EphB2 receptor clustering Nano Letters 18, (1), 629-637

Here we present a nanostructured surface able to produce multivalent interactions between surface-bound ephrinB1 ligands and membrane EphB2 receptors. We created ephrinB1 nanopatterns of regular size (<30 nm in diameter) by using self-assembled diblock copolymers. Next, we used a statistically enhanced version of the Number and Brightness technique, which can discriminate - with molecular sensitivity - the oligomeric states of diffusive species to quantitatively track the EphB2 receptor oligomerization process in real time. The results indicate that a stimulation using randomly distributed surface-bound ligands was not sufficient to fully induce receptor aggregation. Conversely, when nanopatterned onto our substrates, the ligands effectively induced a strong receptor oligomerization. This presentation of ligands improved the clustering efficiency of conventional ligand delivery systems, as it required a 9-fold lower ligand surface coverage and included faster receptor clustering kinetics compared to traditional crosslinked ligands. In conclusion, nanostructured diblock copolymers constitute a novel strategy to induce multivalent ligand-receptor interactions leading to a stronger, faster, and more efficient receptor activation, thus providing a useful strategy to precisely tune and potentiate receptor responses. The efficiency of these materials at inducing cell responses can benefit applications such as the design of new bioactive materials and drug-delivery systems.

JTD


Torras, N., García-Díaz, M., Fernández-Majada, V., Martínez, Elena, (2018). Mimicking epithelial tissues in three-dimensional cell culture models Frontiers in Bioengineering and Biotechnology 6, Article 197

Epithelial tissues are composed of layers of tightly connected cells shaped into complex three-dimensional (3D) structures such as cysts, tubules, or invaginations. These complex 3D structures are important for organ-specific functions and often create biochemical gradients that guide cell positioning and compartmentalization within the organ. One of the main functions of epithelia is to act as physical barriers that protect the underlying tissues from external insults. In vitro, epithelial barriers are usually mimicked by oversimplified models based on cell lines grown as monolayers on flat surfaces. While useful to answer certain questions, these models cannot fully capture the in vivo organ physiology and often yield poor predictions. In order to progress further in basic and translational research, disease modeling, drug discovery, and regenerative medicine, it is essential to advance the development of new in vitro predictive models of epithelial tissues that are capable of representing the in vivo-like structures and organ functionality more accurately. Here, we review current strategies for obtaining biomimetic systems in the form of advanced in vitro models that allow for more reliable and safer preclinical tests. The current state of the art and potential applications of self-organized cell-based systems, organ-on-a-chip devices that incorporate sensors and monitoring capabilities, as well as microfabrication techniques including bioprinting and photolithography, are discussed. These techniques could be combined to help provide highly predictive drug tests for patient-specific conditions in the near future.

JTD Keywords: 3D cell culture models, Biofabrication, Disease modeling, Drug screening, Epithelial barriers, Microengineered tissues, Organ-on-a-chip, Organoids