Staff member publications
Castillo-Escario Y, Werthen-Brabants L, Groenendaal W, Deschrijver D, Jane R, (2022). Convolutional Neural Networks for Apnea Detection from Smartphone Audio Signals: Effect of Window Size Annu Int Conf Ieee Eng Med Biol Soc 2022, 666-669
Although sleep apnea is one of the most prevalent sleep disorders, most patients remain undiagnosed and untreated. The gold standard for sleep apnea diagnosis, polysomnography, has important limitations such as its high cost and complexity. This leads to a growing need for novel cost-effective systems. Mobile health tools and deep learning algorithms are nowadays being proposed as innovative solutions for automatic apnea detection. In this work, a convolutional neural network (CNN) is trained for the identification of apnea events from the spectrograms of audio signals recorded with a smartphone. A systematic comparison of the effect of different window sizes on the model performance is provided. According to the results, the best models are obtained with 60 s windows (sensitivity-0.72, specilicity-0.89, AUROC = 0.88), For smaller windows, the model performance can be negatively impacted, because the windows become shorter than most apnea events, by which sound reductions can no longer be appreciated. On the other hand, longer windows tend to include multiple or mixed events, that will confound the model. This careful trade-off demonstrates the importance of selecting a proper window size to obtain models with adequate predictive power. This paper shows that CNNs applied to smartphone audio signals can facilitate sleep apnea detection in a realistic setting and is a first step towards an automated method to assist sleep technicians. Clinical Relevance- The results show the effect of the window size on the predictive power of CNNs for apnea detection. Furthermore, the potential of smartphones, audio signals, and deep neural networks for automatic sleep apnea screening is demonstrated.
JTD
Ferrer-Lluís, I., Castillo-Escario, Y., Montserrat, J. M., Jané, R., (2020). Analysis of smartphone triaxial accelerometry for monitoring sleep disordered breathing and sleep position at home IEEE Access 8, 71231 - 71244
Obstructive sleep apnea (OSA) is a sleep disorder in which repetitive upper airway obstructive events occur during sleep. These events can induce hypoxia, which is a risk factor for multiple cardiovascular and cerebrovascular diseases. OSA is also known to be position-dependent in some patients, which is referred to as positional OSA (pOSA). Screening for pOSA is necessary in order to design more personalized and effective treatment strategies. In this article, we propose analyzing accelerometry signals, recorded with a smartphone, to detect and monitor OSA at home. Our objectives were to: (1) develop an algorithm for detecting thoracic movement associated with disordered breathing events; (2) compare the performance of smartphones as OSA monitoring tools with a type 3 portable sleep monitor; and (3) explore the feasibility of using smartphone accelerometry to retrieve reliable patient sleep position data and assess pOSA. Accelerometry signals were collected through simultaneous overnight acquisition using both devices with 13 subjects. The smartphone tool showed a high degree of concordance compared to the portable device and succeeded in estimating the apnea-hypopnea index (AHI) and classifying the severity level in most subjects. To assess the agreement between the two systems, an event-by-event comparison was performed, which found a sensitivity of 90% and a positive predictive value of 80%. It was also possible to identify pOSA by determining the ratio of events occurring in a specific position versus the time spent in that position during the night. These novel results suggest that smartphones are promising mHealth tools for OSA and pOSA monitoring at home.
JTD Keywords: Accelerometry, Biomedical signal processing, mHealth, Monitoring, Sleep apnea, Sleep position, Smartphone
Castillo-Escario, Y., Rodríguez-Cañón, M., García-Alías, G., Jané, R., (2020). Identifying muscle synergies from reaching and grasping movements in rats IEEE Access 8, 62517-62530
Reaching and grasping (R&G) is a skilled voluntary movement which is critical for animals. In this work, we aim to identify muscle synergy patterns from R&G movements in rats and show how these patterns can be used to characterize such movements and investigate their consistency and repeatability. For that purpose, we analyzed the electromyographic (EMG) activity of five forelimb muscles recorded while the animals were engaged in R&G tasks. Our dataset included 200 R&G attempts from three different rats. Non-negative matrix factorization was used to decompose EMG signals and extract muscle synergies. We compared all pairs of attempts and created cross-validated models to study intra- and inter-subject variability. We found that three synergies were enough to accurately reconstruct the EMG envelopes. These muscle synergies and their corresponding activation coefficients were very similar for all the attempts in the database, providing a general pattern to describe the movement. Results suggested that the movement strategy adopted by an individual in its different attempts was highly repetitive, but also resembled the strategies adopted by the other animals. Inter-subject variability was not much higher than intra-subject variability. This study is a proof-of-concept, but the proposed approaches can help to establish whether there is a stereotyped pattern of neuromuscular activity in R&G movement in healthy rats, and the changes that occur in animal models of acute neurological injuries. Research on muscle synergies could elucidate motor control mechanisms, and lead to quantitative tools for evaluating upper limb motor impairment after an injury.
JTD Keywords: Electromyography, Motor control, Muscle synergies, Reaching and grasping, Upper limb
Castillo-Escario, Y., Ferrer-Lluis, I., Montserrat, J. M., Jané, R., (2019). Entropy analysis of acoustic signals recorded with a smartphone for detecting apneas and hypopneas: A comparison with a commercial system for home sleep apnea diagnosis IEEE Access 7, 128224-128241
Obstructive sleep apnea (OSA) is a prevalent disease, but most patients remain undiagnosed and untreated. Here we propose analyzing smartphone audio signals for screening OSA patients at home. Our objectives were to: (1) develop an algorithm for detecting silence events and classifying them into apneas or hypopneas; (2) evaluate the performance of this system; and (3) compare the information provided with a type 3 portable sleep monitor, based mainly on nasal airflow. Overnight signals were acquired simultaneously by both systems in 13 subjects (3 healthy subjects and 10 OSA patients). The sample entropy of audio signals was used to identify apnea/hypopnea events. The apnea-hypopnea indices predicted by the two systems presented a very high degree of concordance and the smartphone correctly detected and stratified all the OSA patients. An event-by-event comparison demonstrated good agreement between silence events and apnea/hypopnea events in the reference system (Sensitivity = 76%, Positive Predictive Value = 82%). Most apneas were detected (89%), but not so many hypopneas (61%). We observed that many hypopneas were accompanied by snoring, so there was no sound reduction. The apnea/hypopnea classification accuracy was 70%, but most discrepancies resulted from the inability of the nasal cannula of the reference device to record oral breathing. We provided a spectral characterization of oral and nasal breathing to correct this effect, and the classification accuracy increased to 82%. This novel knowledge from acoustic signals may be of great interest for clinical practice to develop new non-invasive techniques for screening and monitoring OSA patients at home.
JTD Keywords: Sleep apnea, Acoustics, Monitoring, Entropy, Sensors, Microphones, Acoustics, Biomedical signal processing, mHealth, Monitoring, Sleep apnea, Smartphone
Ferrer-Lluis, I., Castillo-Escario, Y., Montserrat, J. M., Jané, R., (2019). Automatic event detector from smartphone accelerometry: Pilot mHealth study for obstructive sleep apnea monitoring at home Engineering in Medicine and Biology Society (EMBC) 41st Annual International Conference of the IEEE , IEEE (Berlín, Germany) , 4990-4993
Obstructive sleep apnea (OSA) is a common disorder with a low diagnosis ratio, leaving many patients undiagnosed and untreated. In the last decades, accelerometry has been found to be a feasible solution to obtain respiratory activity and a potential tool to monitor OSA. On the other hand, many smartphone-based systems have already been developed to propose solutions for OSA monitoring and treatment. The objective of this work was to develop an automatic event detector based on smartphone accelerometry and pulse oximetry, and to assess its ability to detect thoracic movements. It was validated with a commercial OSA monitoring system at home. Results of this preliminary pilot study showed that the proposed event detector for accelerometry signals is a feasible tool to detect abnormal respiratory events, such as apneas and hypopneas, and has potential to be included in smartphone-based systems for OSA assessment.
JTD Keywords: Sleep apnea, Detectors, Pulse oximetry, Monitoring, Manuals, Band-pass filters, Pulse oximeter
Castillo-Escario, Y., Ferrer-Lluis, I., Montserrat, J. M., Jané, R., (2019). Automatic silence events detector from smartphone audio aignals: A pilot mHealth system for sleep apnea monitoring at home Engineering in Medicine and Biology Society (EMBC) 41st Annual International Conference of the IEEE , IEEE (Berlín, Germany) , 4982-4985
Obstructive sleep apnea (OSA) is a prevalent disease, but most patients remain undiagnosed and untreated. Recently, mHealth tools are being proposed to screen OSA patients at home. In this work, we analyzed full-night audio signals recorded with a smartphone microphone. Our objective was to develop an automatic detector to identify silence events (apneas or hypopneas) and compare its performance to a commercial portable system for OSA diagnosis (ApneaLink™, ResMed). To do that, we acquired signals from three subjects with both systems simultaneously. A sleep specialist marked the events on smartphone and ApneaLink signals. The automatic detector we developed, based on the sample entropy, identified silence events similarly than manual annotation. Compared to ApneaLink, it was very sensitive to apneas (detecting 86.2%) and presented an 83.4% positive predictive value, but it missed about half the hypopnea episodes. This suggests that during some hypopneas the flow reduction is not reflected in sound. Nevertheless, our detector accurately recognizes silence events, which can provide valuable respiratory information related to the disease. These preliminary results show that mHealth devices and simple microphones are promising non-invasive tools for personalized sleep disorders management at home.
JTD Keywords: Detectors, Manuals, Sleep apnea, Microphones, Labeling, Hospitals
Castillo-Escario, Y., Rodríguez-Cañón, M., García-Alías, G., Jané, R., (2019). Onset detection to study muscle activity in reaching and grasping movements in rats Engineering in Medicine and Biology Society (EMBC) 41st Annual International Conference of the IEEE , IEEE (Berlín, Germany) , 5113-5116
EMG signals reflect the neuromuscular activation patterns related to the execution of a certain movement or task. In this work, we focus on reaching and grasping (R&G) movements in rats. Our objective is to develop an automatic algorithm to detect the onsets and offsets of muscle activity and use it to study muscle latencies in R&G maneuvers. We had a dataset of intramuscular EMG signals containing 51 R&G attempts from 2 different animals. Simultaneous video recordings were used for segmentation and comparison. We developed an automatic onset/offset detector based on the ratio of local maxima of Teager-Kaiser Energy (TKE). Then, we applied it to compute muscle latencies and other features related to the muscle activation pattern during R&G cycles. The automatic onsets that we found were consistent with visual inspection and video labels. Despite the variability between attempts and animals, the two rats shared a sequential pattern of muscle activations. Statistical tests confirmed the differences between the latencies of the studied muscles during R&G tasks. This work provides an automatic tool to detect EMG onsets and offsets and conducts a preliminary characterization of muscle activation during R&G movements in rats. This kind of approaches and data processing algorithms can facilitate the studies on upper limb motor control and motor impairment after spinal cord injury or stroke.
JTD Keywords: Muscles, Electromyography, Rats, Low pass filters, Microsoft Windows, Band-pass filters
Castillo, Y., Blanco, D., Whitney, J., Mersky, B., Jané, R., (2017). Characterization of a tooth microphone coupled to an oral appliance device: A new system for monitoring OSA patients Engineering in Medicine and Biology Society (EMBC) 39th Annual International Conference of the IEEE , IEEE (Seogwipo, South Korea) , 1543-1546
Obstructive sleep apnea (OSA) is a highly prevalent chronic disease, especially in elderly and obese populations. Despite constituting a serious health, social and economic problem, most patients remain undiagnosed and untreated due to limitations in current equipment. In this work, we propose a novel method to diagnose OSA and monitor therapy adherence and effectiveness at home in a non-invasive and inexpensive way: combining acoustic analysis of breathing and snoring sounds with oral appliance therapy (OA). Audiodontics has introduced a new sensor, a tooth microphone coupled to an OA device, which is the main pillar of this system. The objective of this work is to characterize the response of this sensor, comparing it with a commercial tracheal microphone (Biopac transducer). Signals containing OSA-related sounds were acquired simultaneously with the two microphones for that purpose. They were processed and analyzed in time, frequency and time-frequency domains, in a custom MATLAB interface. We carried out a single-event approach focused on breaths, snores and apnea episodes. We found that the quality of the signals obtained by both microphones was quite similar, although the tooth microphone spectrum concentrated more energy at the high-frequency band. This opens a new field of study about high-frequency components of snores and breathing sounds. These characteristics, together with its intraoral position, wireless option and combination with customizable OAs, give the tooth microphone a great potential to reduce the impact of sleep disorders, by enabling prompt detection and continuous monitoring of patients at home.
JTD Keywords: Microphones, Teeth, Sleep apnea, Time-frequency analysis, Signal to noise ratio, Monitoring, Acoustics
Castillo, Y., Camara, M. A., Blanco-Almazan, D., Jane, R., (2017). Characterization of microphones for snoring and breathing events analysis in mHealth Engineering in Medicine and Biology Society (EMBC) 39th Annual International Conference of the IEEE , IEEE (Seogwipo, South Korea) , 1547-1550
Obstructive sleep apnea (OSA) is one of the most common sleep disorders, especially in elderly population. Despite its high prevalence and severe consequences, most patients remain undiagnosed due to serious limitations on the existing equipment. Efforts are being done to find cost-effective alternatives and mHealth solutions could play a key role. One promising approach in this context is the acoustic analysis of snoring. The sensor it requires is a microphone, which is widely available in different models and even integrated in smartphones. The objective of this work is to characterize and compare the responses of two commercial tracheal microphones and a mHealth-based microphone, as a proof-of-concept to evaluate their potential as sensors for OSA detection. To do that, we designed an experimental protocol to study OSA-related events (breaths, snores and apneas) simulated by 4 subjects. Test signals were simultaneously recorded with different microphones and posteriorly processed and analyzed. We accurately characterized the frequency response of the two commercial microphones, finding that one of them was too restrictive (bandwidth 50-250 Hz) and thus not suitable as snoring sensor for high-frequency acoustic analysis. Regarding smartphones, we studied the Samsung Galaxy S5 microphone. We found that, when located over the thorax, it provided quality signals comparable to those of tracheal microphones, with a broader frequency response. Further work is required, but this preliminary study suggests that acoustic analysis of snoring through mHealth solutions can be a feasible alternative to screen and monitor OSA patients at home.
JTD
Camara, M. A., Castillo, Y., Blanco-Almazan, D., Estrada, L., Jane, R., (2017). MHealth tools for monitoring Obstructive Sleep Apnea patients at home: Proof-of-concept Engineering in Medicine and Biology Society (EMBC) 39th Annual International Conference of the IEEE , IEEE (Seogwipo, South Korea) , 1555-1558
Obstructive Sleep Apnea (OSA) is a sleep disorder that affects mainly the adult and elderly population. Due to the high percentage of patients who remain undiagnosed and untreated because of limitations of current diagnosis methods, the management of OSA is an important social, scientific and economic problem that will be difficult to be assumed by health systems. On the other hand, smartphone platforms (mHealth systems) are being considered as an innovative solution, thanks to the integration of the essential sensors to obtain clinically relevant parameters in the same device or in combination with wireless wearable devices.
JTD Keywords: Sleep apnea, Microphones, Monitoring, Sensors, Accelerometers, Biomedical monitoring, Band-pass filters
Castillo, Y., Blanco, D., Cámara, M.A., Jané, R., (2016). Study of time-frequency characteristics of single snores: extracting new information for sleep apnea diagnosis CASEIB Proceedings XXXIV Congreso Anual de la Sociedad Española de Ingeniería Biomédica (CASEIB 2016) , Sociedad Española de Ingeniería Biomédica (Valencia, Spain) , 105-108
Obstructive sleep apnea (OSA) is a highly prevalent chronic disease, especially in elderly and obese population. Despite constituting a huge health and economic problem, most patients remain undiagnosed due to limitations in current strategies. Therefore, it is essential to find cost-effective diagnostic alternatives. One of these novel approaches is the analysis of acoustic snoring signals. Snoring is an early symptom of OSA which carries pathophysiological information of high diagnostic value. For this reason, the main objective of this work is to study the characteristics of single snores of different types, from healthy and OSA subjects. To do that, we analyzed snoring signals from previous databases and developed an experimental protocol to record simulated OSA-related sounds and characterize the response of two commercial tracheal microphones. Automatic programs for filtering, downsampling,
event detection and time-frequency analysis were built in MATLAB. We found that time-frequency maps and spectral parameters (central, mean and peak frequency and energy in the 100-500 Hz band) allow distinguishing regular snores of healthy subjects from non-regular snores and snores of OSA subjects. Regarding the two commercial microphones, we found that one of them was a suitable snoring sensor, while the other had a too restricted frequency response. Future work shall include a higher number of episodes and subjects, but our study has contributed to show how important the differences between regular and non-regular snores can be for OSA diagnosis, and how much clinically relevant information can be extracted from time-frequency maps and spectral parameters of single snores.
JTD
Castillo, Y., Gutiérrez, A., (2015). Determining the tertiary structure of an olfactory receptor CASEIB Proceedings XXXIII Congreso Anual de la Sociedad Española de Ingeniería Biomédica (CASEIB 2015) , Sociedad Española de Ingeniería Biomédica (Madrid, Spain) , 245-248
Olfactory receptors (ORs) are transmembrane proteins that interact with odorant molecules, triggering the first step in the mechanism of olfaction. They also occupy a large part of mammalian genome and their dysfunction is involved in some degenerative diseases. Proteins structure is related to their function, but experimentally determining the three-dimensional structure of ORs is tricky. However, recent advances in bioinformatics have made it easier. The objectives of this project were to computationally model several ORs and to study their interactions with odorants. We carried out a comparative modelling process, using Chimera and Modeller programs as alignment, visualization and 3D reconstruction tools. After validating the models by several procedures, we performed docking experiments with DOCK. We predicted binding pockets location and studied which odorants bind which ORs, comparing our results with electrophysiological measures of olfactory neurons activity. At the end, we successfully built six mouse ORs models and tested them against 24 common odorants, obtaining a good correlation with previous studies and thus validating our protocol. Moreover, we reconstructed eight human ORs which had never been modelled before, though their predicted interactions with 63 odorants were not clearly correlated to previous experimental studies. In this way, we have shown the efficiency of these computational algorithms, which can contribute to the research about biological processes such as the mechanism of olfaction. With small improvements, they could be in an early future a suitable alternative to experimental approaches, leading to accurate protein models in a practical, faster and easier way.
JTD