by Keyword: Dip-pen nanolithography

Oberhansl, S., Garcia, A., Lagunas, A., Prats-Alfonso, E., Hirtz, M., Albericio, F., Fuchs, H., Samitier, J., Martinez, Elena, (2014). Mesopattern of immobilised bone morphogenetic protein-2 created by microcontact printing and dip-pen nanolithography influence C2C12 cell fate RSC Advances 4, (100), 56809-56815

Dip-pen nanolithography and microcontact printing were used to fabricate mesopatterned substrates for cell differentiation experiments. A biotin-thiol was patterned on gold substrates and subsequently functionalised with streptavidin and biotinylated bone morphogenetic protein-2 (BMP-2). The feasibility of mesopatterned substrates containing immobilised BMP-2 was proven by obtaining similar differentiation outcomes compared to the growth factor in solution. Therefore, these substrates might be suitable for replacing conventional experiments with BMP-2 in solution.

JTD Keywords: Bone morphogenetic protein-2, C2C12 cells, Dip-pen nanolithography, Micro contact printing

Oberhansl, Sabine, Hirtz, Michael, Lagunas, Anna, Eritja, Ramon, Martinez, Elena, Fuchs, Harald, Samitier, Josep, (2012). Facile modification of silica substrates provides a platform for direct-writing surface click chemistry Small 8, (4), 541-545

Caballero, D., Samitier, J., Errachid, A., (2009). Submerged nanocontact printing (SnCP) of thiols Journal of Nanoscience and Nanotechnology , 9, (11), 6478-6482

Biological patterned surfaces having sub-micron scale resolution are of great importance in many fields of life science and biomedicine. Different techniques have been proposed for surface patterning at the nanoscale. However, most of them present some limitations regarding the patterned area size or are time-consuming. Micro/nanocontact printing is the most representative soft lithography-based technique for surface patterning at the nanoscale. Unfortunately, conventional micro/nanocontact printing also suffers from problems such as diffusion and stamp collapsing that limit pattern resolution. To overcome these problems, a simple way of patterning thiols under liquid media using submerged nanocontact printing (SnCP) over large areas (similar to cm(2)) achieving nanosize resolution is presented. The technique is also low cost and any special equipment neither laboratory conditions are required. Nanostructured poly(dimethyl siloxane) stamps are replicated from commercially available digital video disks. SnCP is used to stamp patterns of 200 nm 1-octadecanethiol lines in liquid media, avoiding ink diffusion and stamp collapsing, over large areas on gold substrates compared with conventional procedures. Atomic force microscopy measurements reveal that the patterns have been successfully transferred with high fidelity. This is an easy, direct, effective and low cost methodology for molecule patterning immobilization which is of interest in those areas that require nanoscale structures over large areas, such as tissue engineering or biosensor applications.

JTD Keywords: Submerged Nanocontact Printing, Replica Molding, Nanopatterning, Large Area, Dip-pen nanolithography, High-aspect-ratio, Soft lithography, Submicronscale, Nanoimprint lithography, Thin-film, Surfaces, Fabrication, Proteins, Nanofabrication

Lopez, M. J., Caballero, D., Campo, E. M., Perez-Castillejos, R., Errachid, A., Esteve, J., Plaza, J. A., (2008). Focused ion beam-assisted technology in sub-picolitre micro-dispenser fabrication Journal of Micromechanics and Microengineering , 18, (7), 8

Novel medical and biological applications are driving increased interest in the fabrication of micropipette or micro-dispensers. Reduced volume samples and drug dosages are prime motivators in this effort. We have combined microfabrication technology with ion beam milling techniques to successfully produce cantilever-type polysilicon micro-dispensers with 3D enclosed microchannels. The microfabrication technology described here allows for the designing of nozzles with multiple shapes. The contribution of ion beam milling has had a large impact on the fabrication process and on further customizing shapes of nozzles and inlet ports. Functionalization tests were conducted to prove the viability of ion beam-fabricated micro-dispensers. Self-assembled monolayers were successfully formed when a gold surface was patterned with a thiol solution dispensed by the fabricated micro-dispensers.

JTD Keywords: Dip-pen nanolithography, Silicon, Deposition, Microneedles, Delivery, Arrays, Polysilicon, Capillary, Systems, Gene

Mills, C. A., Pla, M., Martin, C., Lee, M., Kuphal, M., Sisquella, X., Martinez, E., Errachid, A., Samitier, J., (2007). Structured thin organic active layers and their use in electrochemical biosensors Measurement & Control , 40, (3), 88-91