by Keyword: Food

Farré, R, Rodríguez-Lázaro, MA, Otero, J, Gavara, N, Sunyer, R, Farré, N, Gozal, D, Almendros, I, (2024). Low-cost, open-source device for simultaneously subjecting rodents to different circadian cycles of light, food, and temperature Frontiers In Physiology 15, 1356787

Exposure of experimental rodents to controlled cycles of light, food, and temperature is important when investigating alterations in circadian cycles that profoundly influence health and disease. However, applying such stimuli simultaneously is difficult in practice. We aimed to design, build, test, and open-source describe a simple device that subjects a conventional mouse cage to independent cycles of physiologically relevant environmental variables. The device is based on a box enclosing the rodent cage to modify the light, feeding, and temperature environments. The device provides temperature-controlled air conditioning (heating or cooling) by a Peltier module and includes programmable feeding and illumination. All functions are set by a user-friendly front panel for independent cycle programming. Bench testing with a model simulating the CO2 production of mice in the cage showed: a) suitable air renewal (by measuring actual ambient CO2), b) controlled realistic illumination at the mouse enclosure (measured by a photometer), c) stable temperature control, and d) correct cycling of light, feeding, and temperature. The cost of all the supplies (retail purchased by e-commerce) was <300 US$. Detailed technical information is open-source provided, allowing for any user to reliably reproduce or modify the device. This approach can considerably facilitate circadian research since using one of the described low-cost devices for any mouse group with a given light-food-temperature paradigm allows for all the experiments to be performed simultaneously, thereby requiring no changes in the light/temperature of a general-use laboratory. 1 Introduction

JTD Keywords: Animal experiment, Animal model, Animal research, Article, Circadian alteration, Circadian rhythm, Commercial phenomena, Controlled study, Cycling, Energy consumption, Energy-expenditure, Experimental model, Feeding, Food, Food availability, Illumination, Intermittent fasting, Light, Light cycle, Light dark cycle, Mouse, Nonhuman, Open source technology, Open-source hardware, Performance, Photography, Research, Rhythms, Rodent, Temperature, Temperature cycle

Liu, M, Zhang, C, Gong, XM, Zhang, T, Lian, MM, Chew, EGY, Cardilla, A, Suzuki, K, Wang, HM, Yuan, Y, Li, Y, Naik, MY, Wang, YX, Zhou, BR, Soon, WZ, Aizawa, E, Li, P, Low, JH, Tandiono, M, Montagud, E, Moya-Rull, D, Esteban, CR, Luque, Y, Fang, ML, Khor, CC, Montserrat, N, Campistol, JM, Belmonte, JCI, Foo, JN, Xia, Y, (2024). Kidney organoid models reveal cilium-autophagy metabolic axis as a therapeutic target for PKD both in vitro and in vivo Cell Stem Cell 31, 52-70.e8

Human pluripotent stem cell -derived kidney organoids offer unprecedented opportunities for studying polycystic kidney disease (PKD), which still has no effective cure. Here, we developed both in vitro and in vivo organoid models of PKD that manifested tubular injury and aberrant upregulation of renin-angiotensin aldosterone system. Single -cell analysis revealed that a myriad of metabolic changes occurred during cystogenesis, including defective autophagy. Experimental activation of autophagy via ATG5 overexpression or primary cilia ablation significantly inhibited cystogenesis in PKD kidney organoids. Employing the organoid xenograft model of PKD, which spontaneously developed tubular cysts, we demonstrate that minoxidil, a potent autophagy activator and an FDA -approved drug, effectively attenuated cyst formation in vivo. This in vivo organoid model of PKD will enhance our capability to discover novel disease mechanisms and validate candidate drugs for clinical translation.

JTD Keywords: Adenylate kinase, Adult, Animal cell, Animal experiment, Animal model, Animal tissue, Article, Autophagosome, Autophagy, Autophagy (cellular), Autosomal-dominant, Calcium homeostasis, Cilia, Cilium, Cohort analysis, Controlled study, Cyclic amp, Disease, Dominant polycystic kidney, Enzyme linked immunosorbent assay, Epithelium, Exon, Expression, Female, Food and drug administration, Framework, Generation, Growth, Hepatitis a virus cellular receptor 1, Human, Human cell, Humans, Immunohistochemistry, In vitro study, In vivo study, Kidney, Kidney organoid, Kidney polycystic disease, Male, Minoxidil, Mouse, Mutations, Nonhuman, Organoid, Organoids, Platelet derived growth factor beta receptor, Pluripotent stem-cells, Polycystic kidney diseases, Protein kinase lkb1, Renin, Sequestosome 1, Single cell analysis, Single cell rna seq, Small nuclear rna, Tunel assay, Upregulation, Western blotting, Whole exome sequencing

López-Soldado, I, Guinovart, JJ, Duran, J, (2023). Active Glycogen Synthase in the Liver Prevents High-Fat Diet-Induced Glucose Intolerance, Decreases Food Intake, and Lowers Body Weight International Journal Of Molecular Sciences 24, 2574

Many lines of evidence demonstrate a correlation between liver glycogen content and food intake. We previously demonstrated that mice overexpressing protein targeting to glycogen (PTG) specifically in the liver—which have increased glycogen content in this organ—are protected from high-fat diet (HFD)-induced obesity by reduced food intake. However, the use of PTG to increase liver glycogen implies certain limitations. PTG stimulates glycogen synthesis but also inhibits the enzyme responsible for glycogen degradation. Furthermore, as PTG is a regulatory subunit of protein phosphatase 1 (PP1), which regulates many cellular functions, its overexpression could have side effects beyond the regulation of glycogen metabolism. Therefore, it is necessary to determine whether the direct activation of glycogen synthesis, without affecting its degradation or other cellular functions, has the same effects. To this end, we generated mice overexpressing a non-inactivatable form of glycogen synthase (GS) specifically in the liver (9A-MGSAlb mice). Control and 9a-MGSAlb mice were fed a standard diet (SD) or HFD for 16 weeks. Glucose tolerance and feeding behavior were analyzed. 9A-MGSAlb mice showed an increase in hepatic glycogen in fed and fasting conditions. When fed an HFD, these animals preserved their hepatic energy state, had a reduced food intake, and presented a lower body weight and fat mass than control animals, without changes in energy expenditure. Furthermore, 9A-MGSAlb animals showed improved glucose tolerance when fed an SD or HFD. Moreover, liver triacylglycerol levels that were increased after HFD feeding were lower in these mice. These results confirm that increased liver glycogen stores contribute to decreased appetite and improve glucose tolerance in mice fed an HFD. On the basis of our findings, strategies to preserve hepatic glycogen stores emerge as potential treatments for obesity and hyperglycemia.

JTD Keywords: accumulation, atp, attenuates obesity, expression, food intake, glucose, glycogen, glycogen synthase, high-fat diet, homeostasis, hyperglycemia, liver, mgat1, muscle, protein, ptg, Glycogen, Hepatic overexpression, Liver

López-Soldado, I, Guinovart, JJ, Duran, J, (2022). Hepatic overexpression of protein targeting to glycogen attenuates obesity and improves hyperglycemia in db/db mice Frontiers In Endocrinology 13, 969924

Increased liver glycogen content has been shown to reduce food intake, attenuate obesity, and improve glucose tolerance in a mouse model of high-fat diet (HFD)-induced obesity. Here we studied the contribution of liver glycogen to the regulation of obesity and glucose metabolism in a model of type 2 diabetes and obesity, namely the db/db mouse. To this end, we crossed db/db mice with animals overexpressing protein targeting to glycogen (PTG) in the liver to generate db/db mice with increased liver glycogen content (db/db-PTG). Hepatic PTG overexpression reduced food intake and fat weight and attenuated obesity and hyperglycemia in db/db mice. Db/db-PTG mice showed similar energy expenditure and physical activity to db/db mice. PTG overexpression reduced liver phosphoenolpyruvate carboxykinase (PEPCK) protein levels and repressed hepatic glucose production in db/db mice. Moreover, increased liver glycogen elevated hepatic ATP content in these animals. However, lipid metabolism was not modified by PTG overexpression. In conclusion, increased liver glycogen content ameliorates the diabetic and obesity phenotype in db/db mice.Copyright © 2022 López-Soldado, Guinovart and Duran.

JTD Keywords: atp, db, dyslipidemia, food intake, glucose, homeostasis, liver, metabolism, mouse, receptor, Atp, Db/db, Food intake, Food-intake, Glucose, Glycogen, Liver

Freire, R, Fernandez, L, Mallafré-Muro, C, Martín-Gómez, A, Madrid-Gambin, F, Oliveira, L, Pardo, A, Arce, L, Marco, S, (2021). Full workflows for the analysis of gas chromatography—ion mobility spectrometry in foodomics: Application to the analysis of iberian ham aroma Sensors 21, 6156

Gas chromatography—ion mobility spectrometry (GC-IMS) allows the fast, reliable, and inexpensive chemical composition analysis of volatile mixtures. This sensing technology has been successfully employed in food science to determine food origin, freshness and preventing alimentary fraud. However, GC-IMS data is highly dimensional, complex, and suffers from strong non-linearities, baseline problems, misalignments, peak overlaps, long peak tails, etc., all of which must be corrected to properly extract the relevant features from samples. In this work, a pipeline for signal pre-processing, followed by four different approaches for feature extraction in GC-IMS data, is presented. More precisely, these approaches consist of extracting data features from: (1) the total area of the reactant ion peak chromatogram (RIC); (2) the full RIC response; (3) the unfolded sample matrix; and (4) the ion peak volumes. The resulting pipelines for data processing were applied to a dataset consisting of two different quality class Iberian ham samples, based on their feeding regime. The ability to infer chemical information from samples was tested by comparing the classification results obtained from partial least-squares discriminant analysis (PLS-DA) and the samples’ variable importance for projection (VIP) scores. The choice of a feature extraction strategy is a trade-off between the amount of chemical information that is preserved, and the computational effort required to generate the data models.

JTD Keywords: authenticity, classification, electronic-nose, feature extraction, food analysis, gc-ims, headspace, least-squares, models, pld-da, pre-processing, quality, sensory analysis, wine, Feature extraction, Food analysis, Gc-ims, Hs-gc-ims, Pld-da, Pre-processing

Taghadomi-Saberi, S., Garcia, S. M., Masoumi, A. A., Sadeghi, M., Marco, S., (2018). Classification of bitter orange essential oils according to fruit ripening stage by untargeted chemical profiling and machine learning Sensors 18, (6), 1922

The quality and composition of bitter orange essential oils (EOs) strongly depend on the ripening stage of the citrus fruit. The concentration of volatile compounds and consequently its organoleptic perception varies. While this can be detected by trained humans, we propose an objective approach for assessing the bitter orange from the volatile composition of their EO. The method is based on the combined use of headspace gas chromatography–mass spectrometry (HS-GC-MS) and artificial neural networks (ANN) for predictive modeling. Data obtained from the analysis of HS-GC-MS were preprocessed to select relevant peaks in the total ion chromatogram as input features for ANN. Results showed that key volatile compounds have enough predictive power to accurately classify the EO, according to their ripening stage for different applications. A sensitivity analysis detected the key compounds to identify the ripening stage. This study provides a novel strategy for the quality control of bitter orange EO without subjective methods.

JTD Keywords: Bitter orange essential oil, Headspace gas chromatography–mass spectrometry, Artificial neural network, Foodomics, Chemometrics, Feature selection

Fernandez, L., Martin-Gomez, A., Mar Contreras, M., Padilla, M., Marco, S., Arce, L., (2017). Ham quality evaluation assisted by gas chromatography ion mobility spectrometry IEEE Conference Publications ISOCS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN) , IEEE (Montreal, Canada) , 1-3

In recent years, Gas Chromatography-Ion Mobility Spectrometry (GC-IMS) has been successfully employed in food science as a control technique for the prevention of fraud according to food and labeling regulations. In this work, we propose the use of GC-IMS technique to assess the quality of Iberian ham with regard to the Iberian Pig's diet (either nourished with feed or with acorns). For this purpose, we have acquired a dataset composed of 53 samples of Iberian ham from different food providers using a commercial GC-IMS (FlavourSpec, from G.A.S. Dortmund, Germany). Intensive signal pre-processing for GC-IMS was applied to the raw data. This dataset was employed to create four Partial Least Squares Discriminant Analysis (PLSDA) models corresponding to different train/test partitions of the dataset. Nearly perfect classification rates (above 91 %) were obtained for each partition of the dataset, denoting the high power of GC-IMS to characterize food samples.

JTD Keywords: Classification, Food Science, GC-IMS, Ham quality, PLSDA

Tort, N., Salvador, J. P., Eritja, R., Poch, M., Martinez, E., Samitier, J., Marco, M. P., (2009). Fluorescence site-encoded DNA addressable hapten microarray for anabolic androgenic steroids Trac-Trends in Analytical Chemistry , 28, (6), 718-728

We report a new strategy for immunochemical screening of small organic molecules based on the use of a hapten microarray. Using DNA-directed immobilization strategies, we have been able to convert a DNA chip into a hapten microarray by taking advantage of all the benefits of the structural and electrostatic homogeneous properties of DNA. The hapten microarray uses hapten-oligonucleotide probes instead of proteins, avoiding the limitations of preparing stochiometrically-defined protein-oligonucleotide bioconjugates. As proof of concept, we show here the development of a microarray for analysis of anabolic androgenic steroids. The microchip is able to detect several illegal substances with sufficient detectability to be used as a screening method, according to the regulations of the World Anti-Doping Agency for sport and the European Commision for food safety. The results that we show corroborate the universal possibilities of the DNA chip, and, in this case, they open the way to develop hapten microarrays for the immunochemical analysis of small organic molecules.

JTD Keywords: Anti-doping, DNA chip, DNA-directed immobilization (DDI), Fluorescence, Food safety, Hapten microarray, Immunochemical screening, Proof of concept, Small organic molecule, Steroid