DONATE

Publications

by Keyword: glucose

Rae, CD, Baur, JA, Borges, K, Dienel, G, Díaz-García, CM, Douglass, SR, Drew, K, Duarte, JMN, Duran, J, Kann, O, Kristian, T, Lee-Liu, D, Lindquist, BE, Mcnay, EC, Robinson, MB, Rothman, DL, Rowlands, BD, Ryan, TA, Scafidi, J, Scafidi, S, Shuttleworth, CW, Swanson, RA, Uruk, G, Vardjan, N, Zorec, R, Mckenna, MC, (2024). Brain energy metabolism: A roadmap for future research Journal Of Neurochemistry 168, 910-954

Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research. This article details current knowledge and major unknowns in brain energy metabolism and lays out a roadmap for future research.image

JTD Keywords: Acetate, Acetyl-coa, Aerobic glycolysis, Atp-citrate lyase, Extracellular glutamate concentration, Fatty-acid transport, Glucose-metabolism, Glut4, In-vivo, Insulin, Lipid droplet accumulation, Nicotinamide adenine-dinucleotide, Noradrenaline, Obese zucker rats, Rat cerebral-cortex


López-Soldado, I, Guinovart, JJ, Duran, J, (2023). Active Glycogen Synthase in the Liver Prevents High-Fat Diet-Induced Glucose Intolerance, Decreases Food Intake, and Lowers Body Weight International Journal Of Molecular Sciences 24, 2574

Many lines of evidence demonstrate a correlation between liver glycogen content and food intake. We previously demonstrated that mice overexpressing protein targeting to glycogen (PTG) specifically in the liver—which have increased glycogen content in this organ—are protected from high-fat diet (HFD)-induced obesity by reduced food intake. However, the use of PTG to increase liver glycogen implies certain limitations. PTG stimulates glycogen synthesis but also inhibits the enzyme responsible for glycogen degradation. Furthermore, as PTG is a regulatory subunit of protein phosphatase 1 (PP1), which regulates many cellular functions, its overexpression could have side effects beyond the regulation of glycogen metabolism. Therefore, it is necessary to determine whether the direct activation of glycogen synthesis, without affecting its degradation or other cellular functions, has the same effects. To this end, we generated mice overexpressing a non-inactivatable form of glycogen synthase (GS) specifically in the liver (9A-MGSAlb mice). Control and 9a-MGSAlb mice were fed a standard diet (SD) or HFD for 16 weeks. Glucose tolerance and feeding behavior were analyzed. 9A-MGSAlb mice showed an increase in hepatic glycogen in fed and fasting conditions. When fed an HFD, these animals preserved their hepatic energy state, had a reduced food intake, and presented a lower body weight and fat mass than control animals, without changes in energy expenditure. Furthermore, 9A-MGSAlb animals showed improved glucose tolerance when fed an SD or HFD. Moreover, liver triacylglycerol levels that were increased after HFD feeding were lower in these mice. These results confirm that increased liver glycogen stores contribute to decreased appetite and improve glucose tolerance in mice fed an HFD. On the basis of our findings, strategies to preserve hepatic glycogen stores emerge as potential treatments for obesity and hyperglycemia.

JTD Keywords: accumulation, atp, attenuates obesity, expression, food intake, glucose, glycogen, glycogen synthase, high-fat diet, homeostasis, hyperglycemia, liver, mgat1, muscle, protein, ptg, Glycogen, Hepatic overexpression, Liver


Munoz-Galan, H, Molina, BG, Bertran, O, Perez-Madrigal, MM, Aleman, C, (2022). Combining rapid and sustained insulin release from conducting hydrogels for glycemic control br European Polymer Journal 181, 111670

Innovative insulin delivery systems contemplate combining multi-pharmacokinetic profiles for glycemic control. Two device configurations have been designed for the controlled release of insulin using the same chemical compounds. The first insulin delivery system, which displays a rapid release response that, in addition, is enhanced on a short time scale by electrical stimulation, consists on an insulin layer sandwiched between a conducting poly(3,4-ethylenedioxythiophene) (PEDOT) film and a poly-gamma-glutamic acid (gamma-PGA) hydrogel. The second system is constituted by gamma-PGA hydrogel loaded with insulin and PEDOT nanoparticles by in situ gelation. In this case, the insulin release, which only starts after the degradation of the hydrogel over time (i.e. on a long time scale), is slow and sustained. The combination of an on-demand and fast release profile with a sustained and slow profile, which act on different time scales, would result in a very efficient regulation of diabetes therapy in comparison to current systems, allowing to control both fast and sustained glycemic events. Considering that the two systems developed in this work are based on the same chemical components, future work will be focused on the combination of the two kinetic profiles by re-engineering a unique insulin release device using gamma-PGA, PEDOT and insulin.

JTD Keywords: Conducting polymer, Constant, Diabetes, Diabetes-mellitus, Drug-delivery, Electrodes, Electrostimulation, Glucose-responsive hydrogels, Hydrogel, Molecular dynamics, Molecular-dynamics, Nanogels, Nanoparticles, Poly(3,4-ethylenedioxythiophene), Risk


Fontana-Escartin, A, Lanzalaco, S, Bertran, O, Aleman, C, (2022). Electrochemical multi-sensors obtained by applying an electric discharge treatment to 3D-printed poly(lactic acid) Applied Surface Science 597, 153623

Electrochemical sensors for real-time detection of several bioanalytes have been prepared by additive manufacturing, shaping non-conductive poly(lactic acid) (PLA) filaments, and applying a physical treatment to create excited species. The latter process, which consists of the application of power discharge of 100 W during 2 min in a chamber at a low pressure of O-2, converts electrochemically inert PLA into an electrochemically responsive material. The electric discharge caused the oxidation of the PLA surface as evidenced by the increment in the quantity of oxygenated species detected by FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). Indeed, changes in the surface chemical composition became more pronounced with increasing O-2 pressure. After demonstrating the performance of the chemically modified material as individual dopamine and glucose sensors, multiplexed detection has been achieved by measuring simultaneously the two voltammetric signals. This has been performed by collecting the signals in two different regions, a naked chemically modified PLA for dopamine detection and a chemically modified PLA region functionalized with Glucose Oxidase. These outcomes led to define a new paradigm for manufacturing electrodes for electrochemical sensors based on 3D printing without using conducting materials at any stage of the process.

JTD Keywords: Additive manu f a c turing, Carbon, Conductivity, Degradation, Dopamine, Dopamine detection, Glucose detection, Glucose sensors, Immobilization, Multiplexed detect i o n, Oxidase, Plasma treatment


López-Soldado, I, Guinovart, JJ, Duran, J, (2022). Hepatic overexpression of protein targeting to glycogen attenuates obesity and improves hyperglycemia in db/db mice Frontiers In Endocrinology 13, 969924

Increased liver glycogen content has been shown to reduce food intake, attenuate obesity, and improve glucose tolerance in a mouse model of high-fat diet (HFD)-induced obesity. Here we studied the contribution of liver glycogen to the regulation of obesity and glucose metabolism in a model of type 2 diabetes and obesity, namely the db/db mouse. To this end, we crossed db/db mice with animals overexpressing protein targeting to glycogen (PTG) in the liver to generate db/db mice with increased liver glycogen content (db/db-PTG). Hepatic PTG overexpression reduced food intake and fat weight and attenuated obesity and hyperglycemia in db/db mice. Db/db-PTG mice showed similar energy expenditure and physical activity to db/db mice. PTG overexpression reduced liver phosphoenolpyruvate carboxykinase (PEPCK) protein levels and repressed hepatic glucose production in db/db mice. Moreover, increased liver glycogen elevated hepatic ATP content in these animals. However, lipid metabolism was not modified by PTG overexpression. In conclusion, increased liver glycogen content ameliorates the diabetic and obesity phenotype in db/db mice.Copyright © 2022 López-Soldado, Guinovart and Duran.

JTD Keywords: atp, db, dyslipidemia, food intake, glucose, homeostasis, liver, metabolism, mouse, receptor, Atp, Db/db, Food intake, Food-intake, Glucose, Glycogen, Liver


Romeo, Agostino, Moya, Ana, Leung, Tammy S., Gabriel, Gemma, Villa, Rosa, Sánchez, Samuel, (2018). Inkjet printed flexible non-enzymatic glucose sensor for tear fluid analysis Applied Materials Today 10, 133-141

Here, we present a flexible and low-cost inkjet printed electrochemical sensor for enzyme-free glucose analysis. Versatility, short fabrication time and low cost make inkjet printing a valuable alternative to traditional sensor manufacturing techniques. We fabricated electro-chemical glucose sensors by inkjet printing electrodes on a flexible polyethylene terephthalate substrate. CuO microparticles were used to modify our electrodes, leading to a sensitive, stable and cost-effective platform for non-enzymatic detection of glucose. Selectivity, reproducibility, and life-time provided by the CuO functionalization demonstrated that these sensors are reliable tools for personalized diagnostics and self-assessment of an individual's health. The detection of glucose at concentrations matching that of tear fluid allows us to envisage applications in ocular diagnostics, where painless and non-invasive monitoring of diabetes can be achieved by analyzing glucose contained in tears.

JTD Keywords: Inkjet printing, Non-enzymatic sensor, Glucose, Copper oxide, Tear analysis


Santano-Martínez, R., Leiva-González, R., Avazbeigi, M., Gutiérrez-Gálvez, A., Marco, S., (2013). Identification of molecular properties coding areas in rat's olfactory bulb by rank products Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing BIOSIGNALS 2013 , SciTePress (Barcelona, Spain) , 383-387

Neural coding of chemical information is still under strong debate. It is clear that, in vertebrates, neural representation in the olfactory bulb is a key for understanding a putative odour code. To explore this code, in this work we have studied a public dataset of radio images of 2-Deoxyglucose uptake (2-DG) in the olfactory bulb of rats in response to diverse odorants using univariate pixel selection algorithms: rank-products and Mann-Whitney U (MWU) test. Initial results indicate that some chemical properties of odorants preferentially activate certain areas of the rat olfactory bulb. While non-parametric test (MWU) has difficulties to detect these regions, rank-product provides a higher power of detection.

JTD Keywords: 2-Deoxyglucose uptake, Chemotopy, Feature selection, Odour coding, Olfaction, Olfactory bulb


Juanola-Feliu, E., Colomer-Farrarons, J., Miribel-Català , P., Samitier, J., Valls-Pasola, J., (2012). Market challenges facing academic research in commercializing nano-enabled implantable devices for in-vivo biomedical analysis Technovation , 32, (3-4), 193-204

This article reports on the research and development of a cutting-edge biomedical device for continuous in-vivo glucose monitoring. This entirely public-funded process of technological innovation has been conducted at the University of Barcelona within a context of converging technologies involving the fields of medicine, physics, chemistry, biology, telecommunications, electronics and energy. The authors examine the value chain and the market challenges faced by in-vivo implantable biomedical devices based on nanotechnologies. In so doing, they trace the process from the point of applied research to the final integration and commercialization of the product, when the social rate of return from academic research can be estimated. Using a case-study approach, the paper also examines the high-tech activities involved in the development of this nano-enabled device and describes the technology and innovation management process within the value chain conducted in a University-Hospital-Industry-Administration-Citizens framework. Here, nanotechnology is seen to represent a new industrial revolution, boosting the biomedical devices market. Nanosensors may well provide the tools required for investigating biological processes at the cellular level in vivo when embedded into medical devices of small dimensions, using biocompatible materials, and requiring reliable and targeted biosensors, high speed data transfer, safely stored data, and even energy autonomy.

JTD Keywords: Biomedical device, Diabetes, Innovation management, Nanobiosensor, Nanotechnology, Research commercialization, Technology transfer, Academic research, Applied research, Barcelona, Biocompatible materials, Biological process, Biomedical analysis, Biomedical devices, Cellular levels, Converging technologies, Glucose monitoring, High-speed data transfer, Implantable biomedical devices, Implantable devices, In-vivo, Industrial revolutions, Innovation management, Medical Devices, Nanobiosensor, Rate of return, Research and development, Technological innovation, Value chains, Biological materials, Biomedical engineering, Biosensors, Commerce, Data transfer, Earnings, Engineering education, Glucose, Implants (surgical), Industrial research, Innovation, Medical problems, Nanosensors, Nanotechnology, Technology transfer, Equipment


Falasconi, M., Gutierrez, A., Auffarth, B., Sberveglieri, G., Marco, S., (2009). Cluster analysis of the rat olfactory bulb activity in response to different odorants Olfaction and Electronic Nose: Proceedings of the 13th International Symposium on Olfaction and Electronic Nose 13th International Symposium on Olfaction and the Electronic Nose (ed. Pardo, M., Sberveglieri, G.), Amer Inst Physics (Brescia, Italy) 1137, 169-172

With the goal of deepen in the understanding of coding of chemical information in the olfactory system, a large data set consisting of rat's olfactory bulb activity values in response to several different volatile compounds has been analyzed by fuzzy c-means clustering methods. Clustering should help to discover groups of glomeruli that are similary activated according to their response profiles across the odorants. To investigate the significance of the achieved fuzzy partitions we developed and applied a novel validity approach based on cluster stability. Our results show certain level of glomerular clustering in the olfactory bulb and indicate that exist a main chemo-topic subdivision of the glomerular layer in few macro-area which are rather specific to particular functional groups of the volatile molecules.

JTD Keywords: Olfactory bulb, 2-deoxyglucose mapping, Olfactory coding, Cluster analysis, Cluster validity