by Keyword: Fracture
del-Mazo-Barbara, Laura, Johansson, Linh, Tampieri, Francesco, Ginebra, Maria-Pau, (2024). Toughening 3D printed biomimetic hydroxyapatite scaffolds: Polycaprolactone-based self-hardening inks Acta Biomaterialia 177, 506-524
The application of 3D printing to calcium phosphates has opened unprecedented possibilities for the fabrication of personalized bone grafts. However, their biocompatibility and bioactivity are counterbalanced by their high brittleness. In this work we aim at overcoming this problem by developing a self -hardening ink containing reactive ceramic particles in a polycaprolactone solution instead of the traditional approach that use hydrogels as binders. The presence of polycaprolactone preserved the printability of the ink and was compatible with the hydrolysis -based hardening process, despite the absence of water in the ink and its hydrophobicity. The microstructure evolved from a continuous polymeric phase with loose ceramic particles to a continuous network of hydroxyapatite nanocrystals intertwined with the polymer, in a configuration radically different from the polymer/ceramic composites obtained by fused deposition modelling. This resulted in the evolution from a ductile behavior, dominated by the polymer, to a stiffer behavior as the ceramic phase reacted. The polycaprolactone binder provides two highly relevant benefits compared to hydrogel-based inks. First, the handleability and elasticity of the as -printed scaffolds, together with the proven possibility of eliminating the solvent, opens the door to implanting the scaffolds freshly printed once lyophilized, while in a ductile state, and the hardening process to take place inside the body, as in the case of calcium phosphate cements. Second, even with a hydroxyapatite content of more than 92 wt.%, the flexural strength and toughness of the scaffolds after hardening are twice and five times those of the all -ceramic scaffolds obtained with the hydrogel-based inks, respectively. Statement of significance Overcoming the brittleness of ceramic scaffolds would extend the applicability of synthetic bone grafts to high load -bearing situations. In this work we developed a 3D printing ink by replacing the conventional hydrogel binder with a water -free polycaprolactone solution. The presence of polycaprolactone not only enhanced significantly the strength and toughness of the scaffolds while keeping the proportion of bioactive ceramic phase larger than 90 wt.%, but it also conferred flexibility and manipulability to the as -printed scaffolds. Since they are able to harden upon contact with water under physiological conditions, this opens up the possibility of implanting them immediately after printing, while they are still in a ductile state, with clear advantages for fixation and press -fit in the bone defect. (c) 2024 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
JTD Keywords: 3-d printing, 3d printin, 3d printing, 3d-printing, Binders, Biocompatibility, Biomimetic hydroxyapatites, Biomimetics, Bone, Bone cement, Bone scaffolds, Brittleness, Calcium phosphate, Ceramic phase, Ceramic scaffolds, Ceramics, Ceramics particles, Fracture mechanics, Hardening, Hardening process, Hydrogels, Hydroxyapatite, Mechanical properties, Mechanical-properties, Plasticity, Polycaprolactone, Pyridine, Scaffolds, Scaffolds (biology), Self hardening, Strength and toughness, Thermodynamic properties, Viv
Kaurin, D., Arroyo, M., (2019). Surface tension controls the hydraulic fracture of adhesive interfaces bridged by molecular bonds Physical Review Letters 123, (22), 228102
Biological function requires cell-cell adhesions to tune their cohesiveness; for instance, during the opening of new fluid-filled cavities under hydraulic pressure. To understand the physical mechanisms supporting this adaptability, we develop a stochastic model for the hydraulic fracture of adhesive interfaces bridged by molecular bonds. We find that surface tension strongly enhances the stability of these interfaces by controlling flaw sensitivity, lifetime, and optimal architecture in terms of bond clustering. We also show that bond mobility embrittles adhesions and changes the mechanism of decohesion. Our study provides a mechanistic background to understand the biological regulation of cell-cell cohesion and fracture.
JTD Keywords: Biomimetic & bio-inspired materials, Cell adhesion, Fracture, Self-healing
Miquel, Joan, Santana, F., Palau, E., Vinagre, M., Langohr, K., Casals, A., Torrens, C., (2018). Retaining or excising the supraspinatus tendon in complex proximal humeral fractures treated with reverse prosthesis: a biomechanical analysis in two different designs Archives of Orthopaedic and Trauma Surgery 138, (11), 1533-1539
Carrera, I., Gelber, P. E., Chary, G., González-Ballester, M. A., Monllau, J. C., Noailly, J., (2016). Fixation of a split fracture of the lateral tibial plateau with a locking screw plate instead of cannulated screws would allow early weight bearing: a computational exploration International Orthopaedics , 40, (10), 2163-2169
Purpose: To assess, with finite element (FE) calculations, whether immediate weight bearing would be possible after surgical stabilization either with cannulated screws or with a locking plate in a split fracture of the lateral tibial plateau (LTP). Methods: A split fracture of the LTP was recreated in a FE model of a human tibia. A three-dimensional FE model geometry of a human femur-tibia system was obtained from the VAKHUM project database, and was built from CT images from a subject with normal bone morphologies and normal alignment. The mesh of the tibia was reconverted into a geometry of NURBS surfaces. A split fracture of the lateral tibial plateau was reproduced by using geometrical data from patient radiographs. A locking screw plate (LP) and a cannulated screw (CS) systems were modelled to virtually reduce the fracture and 80 kg static body-weight was simulated. Results: While the simulated body-weight led to clinically acceptable interfragmentary motion, possible traumatic bone shear stresses were predicted nearby the cannulated screws. With a maximum estimation of about 1.7 MPa maximum bone shear stresses, the Polyax system might ensure more reasonable safety margins. Conclusions: Split fractures of the LTP fixed either with locking screw plate or cannulated screws showed no clinically relevant IFM in a FE model. The locking screw plate showed higher mechanical stability than cannulated screw fixation. The locking screw plate might also allow full or at least partial weight bearing under static posture at time zero.
JTD Keywords: Bone fixation, Finite element, Fracture fixation, Interfragmentary motion, Tibial plateau fractures, Weight bearing
Stocchi, A., Lauke, B., Giannotti, M. I., Vázquez, A., Bernal, C., (2013). Tensile response and fracture and failure behavior of jute fabrics-flyash-vinylester hybrid composites Fibers and Polymers , 14, (2), 285-291
In this work, hybrid materials consisting on a vinylester matrix simultaneaously reinforced with jute woven fabrics and flyash particles were prepared. The tensile response and the fracture and failure behavior of these hybrid composites were investigated. Thermal stability of these materials was also studied. The aim was to obtain an environmentally friendly hybrid material with a good balance of tensile and fracture properties at relatively low cost. The effect of a novel treatment for the jute fabrics on the hybrids mechanical and fracture properties was investigated. The best balance of tensile and fracture properties was obtained for the hybrid consisting of fabrics treated with alkali under stress and fly ashes which also exhibited relatively high thermal stability.
JTD Keywords: Natural fibers, Fly ash, Hybrid composite, Mechanical properties, Fracture