by Keyword: Gas sensors

Solorzano, A, Eichmann, J, Fernandez, L, Ziems, B, Jimenez-Soto, JM, Marco, S, Fonollosa, J, (2022). Early fire detection based on gas sensor arrays: Multivariate calibration and validation Sensors And Actuators B-Chemical 352, 130961

Smoldering fires are characterized by the production of early gas emissions that can include high levels of CO and Volatile Organic Compounds (VOCs) due to pyrolysis or thermal degradation. Nowadays, standalone CO sensors, smoke detectors, or a combination of these, are standard components for fire alarm systems. While gas sensor arrays together with pattern recognition techniques are a valuable alternative for early fire detection, in practice they have certain drawbacks-they can detect early gas emissions, but can show low immunity to nuisances, and sensor time drift can render calibration models obsolete. In this work, we explore the performance of a gas sensor array for detecting smoldering and plastic fires while ensuring the rejection of a set of nuisances. We conducted variety of fire and nuisance experiments in a validated standard fire room (240 m(3)). Using PLS-DA and SVM, we evaluate the performance of different multivariate calibration models for this dataset. We show that calibration models remain predictive after several months, but perfect performance is not achieved. For example, 4 months after calibration, a PLS-DA model provides 100% specificity and 85% sensitivity since the system has difficulties in detecting plastic fires, whose signatures are close to nuisance scenarios. Nevertheless, our results show that systems based on gas sensor arrays are able to provide faster fire alarm response than conventional smoke-based fire alarms. We also propose the use of small-scale fire experiments to increase the number of calibration conditions at a reduced cost. Our results show that this is an effective way to increase the performance of the model, even when evaluated on a standard fire room. Finally, the acquired datasets are made publicly available to the community (doi: 10.5281/zenodo.5643074).

JTD Keywords: Calibration, Chemical sensors, Co2, Early fire, Early fire detection, En-54, Fire alarm, Fire detection, Fire room, Fires, Gas detectors, Gas emissions, Gas sensors, Pattern recognition, Public dataset, Sensor arrays, Sensors array, Signatures, Smoke, Smoke detector, Smoke detectors, Standard fire, Standard fire room, Support vector machines, Temperature, Toxicity, Volatile organic compounds

Burgués, Javier, Esclapez, María Deseada, Doñate, Silvia, Marco, Santiago, (2021). RHINOS: A lightweight portable electronic nose for real-time odor quantification in wastewater treatment plants Iscience 24,

Quantification of odor emissions in wastewater treatment plants (WWTPs) is key to minimize odor impact to surrounding communities. Odor measurements in WWTPs are usually performed via either expensive and discontinuous olfactometry hydrogen sulfide detectors or via fixed electronic noses. We propose a portable lightweight electronic nose specially designed for real-time odor monitoring in WWTPs using small drones. The so-called RHINOS e-nose allows odor measurements with high spatial resolution, and its accuracy is only slightly worse than that of dynamic olfactometry. The device has been calibrated using odor samples collected in a WWTP in Spain over a period of six months and validated in the same WWTP three weeks after calibration. The promising results obtained support the suitability of the proposed instrument to identify the odor sources having the highest emissions, which may give a useful indication to the plant managers as regards odor control and abatement.© 2021 The Author(s).

JTD Keywords: biofiltration, calibration transfer, chemical sensor arrays, chemistry, drift compensation, engineering, environmental chemical engineering, h2s, model, oxide gas sensors, removal, sensor, system, Chemistry, Engineering, Environmental chemical engineering, Sensor, Sensor system, Variable selection methods

Covington JA, Marco S, Persaud KC, Schiffman SS, Troy Nagle H, (2021). Artificial Olfaction in the 21st Century Ieee Sensors Journal 21, 12969-12990

The human olfactory system remains one of the most challenging biological systems to replicate. Humans use it without thinking, where it can equally offer protection from harm and bring enjoyment in equal measure. It is the system’s ability to detect and analyze complex odors, without the need for specialized infra-structure, that is the envy of many scientists. The field of artificial olfaction has recruited and stimulated interdisciplinary research and commercial development for several applications that include malodor measurement, medical diagnostics, food and beverage quality, environment and security. Over the last century, innovative engineers and scientists have been focused on solving a range of problems associated with measurement and control of odor. The IEEE Sensors Journal has published Special Issues on olfaction in 2002 and 2012. Here we continue that coverage. In this article, we summarize early work in the 20th Century that served as the foundation upon which we have been building our odor-monitoring instrumental and measurement systems. We then examine the current state of the art that has been achieved over the last two decades as we have transitioned into the 21st Century. Much has been accomplished, but great progress is needed in sensor technology, system design, product manufacture and performance standards. In the final section, we predict levels of performance and ubiquitous applications that will be realized during in the mid to late 21st Century.

JTD Keywords: air-quality, breath analysis, calibration transfer, chemical sensor arrays, chemosensor arrays, drift compensation, electronic nose, gas sensors, headspace sampling, machine learning, machine olfaction, odor detection, plume structure, voc analysis, Artificial olfaction, Electrodes, Electronic nose, Electronic nose technology, Headspace sampling, Instruments, Machine learning, Machine olfaction, Monitoring, Odor detection, Olfactory, Sensor phenomena and characterization, Sensors, Temperature sensors, Voc analysis

Burgués J, Esclapez MD, Domate S, Pastor L, Marco S, (2021). Aerial mapping of odorous gases in a wastewater treatment plant using a small drone Remote Sensing 13,

Wastewater treatment plants (WWTPs) are sources of greenhouse gases, hazardous air pollutants and offensive odors. These emissions can have negative repercussions in and around the plant, degrading the quality of life of surrounding neighborhoods, damaging the environment, and reducing employee’s overall job satisfaction. Current monitoring methodologies based on fixed gas detectors and sporadic olfactometric measurements (human panels) do not allow for an accurate spatial representation of such emissions. In this paper we use a small drone equipped with an array of electrochemical and metal oxide (MOX) sensors for mapping odorous gases in a mid-sized WWTP. An innovative sampling system based on two (10 m long) flexible tubes hanging from the drone allowed near-source sampling from a safe distance with negligible influence from the downwash of the drone’s propellers. The proposed platform is very convenient for monitoring hard-toreach emission sources, such as the plant’s deodorization chimney, which turned out to be responsible for the strongest odor emissions. The geo-localized measurements visualized in the form of a two-dimensional (2D) gas concentration map revealed the main emission hotspots where abatement solutions were needed. A principal component analysis (PCA) of the multivariate sensor signals suggests that the proposed system can also be used to trace which emission source is responsible for a certain measurement.

JTD Keywords: air pollution, environmental monitoring, gas sensors, industrial emissions, mapping, odour, uav, Air pollution, Drone, Environmental monitoring, Gas sensors, Industrial emissions, Mapping, Odour, Sensors, Uav

Burgués, Javier, Marco, Santiago, (2020). Environmental chemical sensing using small drones: A review Science of The Total Environment 748, 141172

Recent advances in miniaturization of chemical instrumentation and in low-cost small drones are catalyzing exponential growth in the use of such platforms for environmental chemical sensing applications. The versatility of chemically sensitive drones is reflected by their rapid adoption in scientific, industrial, and regulatory domains, such as in atmospheric research studies, industrial emission monitoring, and in enforcement of environmental regulations. As a result of this interdisciplinarity, progress to date has been reported across a broad spread of scientific and non-scientific databases, including scientific journals, press releases, company websites, and field reports. The aim of this paper is to assemble all of these pieces of information into a comprehensive, structured and updated review of the field of chemical sensing using small drones. We exhaustively review current and emerging applications of this technology, as well as sensing platforms and algorithms developed by research groups and companies for tasks such as gas concentration mapping, source localization, and flux estimation. We conclude with a discussion of the most pressing technological and regulatory limitations in current practice, and how these could be addressed by future research.

JTD Keywords: Unmanned aircraft systems, Remotely piloted aircraft systems, Chemical sensors, Gas sensors, Environmental monitoring, Industrial emission monitoring

Burgués, Javier, Marco, Santiago, (2020). Feature extraction for transient chemical sensor signals in response to turbulent plumes: Application to chemical source distance prediction Sensors and Actuators B: Chemical 320, 128235

This paper describes the design of a linear phase low-pass differentiator filter with a finite impulse response (FIR) for extracting transient features of gas sensor signals (the so-called “bouts”). The detection of these bouts is relevant for estimating the distance of a gas source in a turbulent plume. Our current proposal addresses the shortcomings of previous ‘bout’ estimation methods, namely: (i) they were based in non-causal digital filters precluding real time operation, (ii) they used non-linear phase filters leading to waveform distortions and (iii) the smoothing action was achieved by two filters in cascade, precluding an easy tuning of filter performance. The presented method is based on a low-pass FIR differentiator, plus proper post-processing, allowing easy algorithmic implementation for real-time robotic exploration. Linear phase filters preserve signal waveform in the bandpass region for maximum reliability concerning both ‘bout’ detection and amplitude estimation. As a case study, we apply the proposed filter to predict the source distance from recordings obtained with metal oxide (MOX) gas sensors in a wind tunnel. We first perform a joint optimization of the cut-off frequency of the filter and the bout amplitude threshold, for different wind speeds, uncovering interesting relationships between these two parameters. We demonstrate that certain combinations of parameters can reduce the prediction error to 8 cm (in a distance range of 1.45 m) improving previously reported performances in the same dataset by a factor of 2.5. These results are benchmarked against traditional source distance estimators such as the mean, variance and maximum of the response. We also study how the length of the measurement window affects the performance of different signal features, and how to select the filter parameters to make the predictive models more robust to changes in wind speed. Finally, we provide a MATLAB implementation of the bout detection algorithm and all analysis code used in this study.

JTD Keywords: Gas sensors, Differentiator, Low pass filter, Metal oxide semiconductor, MOX sensors, Signal processing, Feature extraction, Gas source localization, Robotics

Burgués, Javier, Hernández, Victor, Lilienthal, Achim J., Marco, Santiago, (2020). Gas distribution mapping and source localization using a 3D grid of metal oxide semiconductor sensors Sensors and Actuators B: Chemical 304, 127309

The difficulty to obtain ground truth (i.e. empirical evidence) about how a gas disperses in an environment is one of the major hurdles in the field of mobile robotic olfaction (MRO), impairing our ability to develop efficient gas source localization strategies and to validate gas distribution maps produced by autonomous mobile robots. Previous ground truth measurements of gas dispersion have been mostly based on expensive tracer optical methods or 2D chemical sensor grids deployed only at ground level. With the ever-increasing trend towards gas-sensitive aerial robots, 3D measurements of gas dispersion become necessary to characterize the environment these platforms can explore. This paper presents ten different experiments performed with a 3D grid of 27 metal oxide semiconductor (MOX) sensors to visualize the temporal evolution of gas distribution produced by an evaporating ethanol source placed at different locations in an office room, including variations in height, release rate and air flow. We also studied which features of the MOX sensor signals are optimal for predicting the source location, considering different lengths of the measurement window. We found strongly time-varying and counter-intuitive gas distribution patterns that disprove some assumptions commonly held in the MRO field, such as that heavy gases disperse along ground level. Correspondingly, ground-level gas distributions were rarely useful for localizing the gas source and elevated measurements were much more informative. We make the dataset and the code publicly available to enable the community to develop, validate, and compare new approaches related to gas sensing in complex environments.

JTD Keywords: Mobile robotic olfaction, Metal oxide gas sensors, Signal processing, Sensor networks, Gas source localization, Gas distribution mapping

Palacio, F., Fonollosa, J., Burgués, J., Gomez, J. M., Marco, S., (2020). Pulsed-temperature metal oxide gas sensors for microwatt power consumption IEEE Access 8, 70938-70946

Metal Oxide (MOX) gas sensors rely on chemical reactions that occur efficiently at high temperatures, resulting in too-demanding power requirements for certain applications. Operating the sensor under a Pulsed-Temperature Operation (PTO), by which the sensor heater is switched ON and OFF periodically, is a common practice to reduce the power consumption. However, the sensor performance is degraded as the OFF periods become larger. Other research works studied, generally, PTO schemes applying waveforms to the heater with time periods of seconds and duty cycles above 20%. Here, instead, we explore the behaviour of PTO sensors working under aggressive schemes, reaching power savings of 99% and beyond with respect to continuous heater stimulation. Using sensor sensitivity and the limit of detection, we evaluated four Ultra Low Power (ULP) sensors under different PTO schemes exposed to ammonia, ethylene, and acetaldehyde. Results show that it is possible to operate the sensors with total power consumption in the range of microwatts. Despite the aggressive power reduction, sensor sensitivity suffers only a moderate decline and the limit of detection may degrade up to a factor five. This is, however, gas-dependent and should be explored on a case-by-case basis since, for example, the same degradation has not been observed for ammonia. Finally, the run-in time, i.e., the time required to get a stable response immediately after switching on the sensor, increases when reducing the power consumption, from 10 minutes to values in the range of 10–20 hours for power consumptions smaller than 200 microwatts.

JTD Keywords: Robot sensing systems, Temperature sensors, Heating systems, Gas detectors, Power demand, Sensitivity, Electronic nose, gas sensors, low-power operation, machine olfaction, pulsed-temperature operation, temperature modulation

Burgués, Javier, Hernández, Victor, Lilienthal, Achim J., Marco, Santiago, (2019). Smelling nano aerial vehicle for gas source localization and mapping Sensors 19, (3), 478

This paper describes the development and validation of the currently smallest aerial platform with olfaction capabilities. The developed Smelling Nano Aerial Vehicle (SNAV) is based on a lightweight commercial nano-quadcopter (27 g) equipped with a custom gas sensing board that can host up to two in situ metal oxide semiconductor (MOX) gas sensors. Due to its small form-factor, the SNAV is not a hazard for humans, enabling its use in public areas or inside buildings. It can autonomously carry out gas sensing missions of hazardous environments inaccessible to terrestrial robots and bigger drones, for example searching for victims and hazardous gas leaks inside pockets that form within the wreckage of collapsed buildings in the aftermath of an earthquake or explosion. The first contribution of this work is assessing the impact of the nano-propellers on the MOX sensor signals at different distances to a gas source. A second contribution is adapting the ‘bout’ detection algorithm, proposed by Schmuker et al. (2016) to extract specific features from the derivative of the MOX sensor response, for real-time operation. The third and main contribution is the experimental validation of the SNAV for gas source localization (GSL) and mapping in a large indoor environment (160 m2) with a gas source placed in challenging positions for the drone, for example hidden in the ceiling of the room or inside a power outlet box. Two GSL strategies are compared, one based on the instantaneous gas sensor response and the other one based on the bout frequency. From the measurements collected (in motion) along a predefined sweeping path we built (in less than 3 min) a 3D map of the gas distribution and identified the most likely source location. Using the bout frequency yielded on average a higher localization accuracy than using the instantaneous gas sensor response (1.38 m versus 2.05 m error), however accurate tuning of an additional parameter (the noise threshold) is required in the former case. The main conclusion of this paper is that a nano-drone has the potential to perform gas sensing tasks in complex environments.

JTD Keywords: Robotics, Signal processing, Electronics, Gas source localization, Gas distribution mapping, Gas sensors, Drone, UAV, MOX sensor, Quadcopter

Burgues, J., Marco, S., (2019). Feature extraction of gas sensor signals for gas source localization ISOEN 2019 18th International Symposium on Olfaction and Electronic Nose , IEEE (Fukuoka, Japan) , 1-3

This paper explores which signal features of a gas sensor are optimum for assessing the proximity to a gas source in an open environment. Specifically, we compare three statistical descriptors of the signal (mean, variance and maximum response) against the 'bout' frequency, a feature computed in the derivative of the response. The experimental setup includes a generator of turbulent plumes and a sensing board composed of three metal oxide (MOX) sensors of different types. The main conclusion is that the maximum response is the most robust feature across the three sensors. The 'bout' frequency can be very sensitive to an additional parameter (the noise threshold).

JTD Keywords: Feature extraction, Gas plume, Gas sensors, Gas source localization, MOX, Signal processing

Burgues, J., Valdez, L. F., Marco, S., (2019). High-bandwidth e-nose for rapid tracking of turbulent plumes ISOEN 2019 18th International Symposium on Olfaction and Electronic Nose , IEEE (Fukuoka, Japan) , 1-3

The low bandwidth of metal oxide semiconductor (MOX) sensors (<0.1 Hz) is a major hurdle to gas source localization (GSL) in turbulent environments where detection of intermittent odor patches is key. We present a fast-response miniaturized electronic nose (Fast-eNose) composed of four naked MOX sensors and a digital band-pass filter that can boost the bandwidth of the system close to 1 Hz. The device was attached to a fast photo-ionization detector (330 Hz) to quantify the response time during exposure to turbulent gas plumes. The results indicate that the digital filter can improve the response time by at least a factor of 4, bringing new possibilities to mobile robot olfaction.

JTD Keywords: CFD, Gas plume, Gas sensors, MOX, Response time, Signal processing

Burgués, J., Jiménez-Soto, J. M., Marco, S., (2018). Estimation of the limit of detection in semiconductor gas sensors through linearized calibration models Analytica Chimica Acta 1013, 13-25

The limit of detection (LOD) is a key figure of merit in chemical sensing. However, the estimation of this figure of merit is hindered by the non-linear calibration curve characteristic of semiconductor gas sensor technologies such as, metal oxide (MOX), gasFETs or thermoelectric sensors. Additionally, chemical sensors suffer from cross-sensitivities and temporal stability problems. The application of the International Union of Pure and Applied Chemistry (IUPAC) recommendations for univariate LOD estimation in non-linear semiconductor gas sensors is not straightforward due to the strong statistical requirements of the IUPAC methodology (linearity, homoscedasticity, normality). Here, we propose a methodological approach to LOD estimation through linearized calibration models. As an example, the methodology is applied to the detection of low concentrations of carbon monoxide using MOX gas sensors in a scenario where the main source of error is the presence of uncontrolled levels of humidity.

JTD Keywords: Semiconductor gas sensors, Metal-oxide sensors, Limit of detection, Non-linear, Humidity interference, Temperature modulation

Burgués, Javier, Hernandez, Victor, Lilienthal, Achim J., Marco, Santiago, (2018). 3D Gas distribution with and without artificial airflow: An experimental study with a grid of metal oxide semiconductor gas sensors Proceedings EUROSENSORS 2018 , MDPI (Graz, Austria) 2, (13), 911

Gas distribution modelling can provide potentially life-saving information when assessing the hazards of gaseous emissions and for localization of explosives, toxic or flammable chemicals. In this work, we deployed a three-dimensional (3D) grid of metal oxide semiconductor (MOX) gas sensors deployed in an office room, which allows for novel insights about the complex patterns of indoor gas dispersal. 12 independent experiments were carried out to better understand dispersion patters of a single gas source placed at different locations of the room, including variations in height, release rate and air flow profiles. This dataset is denser and richer than what is currently available, i.e., 2D datasets in wind tunnels. We make it publicly available to enable the community to develop, validate, and compare new approaches related to gas sensing in complex environments.

JTD Keywords: MOX, Metal oxide, Flow visualization, Gas sensors, Gas distribution mapping, Sensor grid, 3D, Gas source localization, Indoor

Sheik, S., Marco, S., Huerta, R., Fonollosa, J., (2014). Continuous prediction in chemoresisitive gas sensors using reservoir computing Procedia Engineering 28th European Conference on Solid-State Transducers (EUROSENSORS 2014) , Eurosensors (Brescia, Italy) 87, 843-846

Although Metal Oxide (MOX) sensors are predominant choices to perform fundamental tasks of chemical detection, their use has been mainly limited to relatively controlled scenarios where a gas sensor array is first exposed to a reference, then to the gas sample, and finally to the reference again to recover the initial state. In this paper we propose the use of MOX sensors along with Reservoir Computing algorithms to identify chemicals of interest. Our approach allows continuous gas monitoring in simple experimental setups without the requirement of acquiring recovery transient of the sensors, thereby making the system specifically suitable for online monitoring applications.

JTD Keywords: Chemical sensing, Reservoir computing, Gas sensors, Dynamic gas mixtures, Electronic nose

Perera, A., Pardo, A., Barrettino, D., Hierlermann, A., Marco, S., (2010). Evaluation of fish spoilage by means of a single metal oxide sensor under temperature modulation Sensors and Actuators B: Chemical 146, (2), 477-482

In this paper the feasibility of using metal oxide gas sensor technology for evaluating spoilage process for sea bream (Sparus aurata) is explored. It is shown that a single sensor under temperature modulation is able to find a correlation with the fish spoilage process. Results are obtained in real frigorific storage conditions: that is, at low measurement temperatures with variations of relative humidity.

JTD Keywords: Gas sensors, Electronic nose, Spoilage process, Temperature modulation, Bream sparus-aurata, Electronic nose, Freshness, Quality, Sardines, Storage

Padilla, M., Perera, A., Montoliu, I., Chaudry, A., Persaud, K., Marco, S., (2010). Fault detection, identification, and reconstruction of faulty chemical gas sensors under drift conditions, using Principal Component Analysis and Multiscale-PCA Theoretical or Mathematical; Experimental The 2010 International Joint Conference on Neural Networks (IJCNN 2010) , IEEE, Piscataway, NJ, USA (Barcelona, Spain) , 7 pp.

Statistical methods like Principal Components Analysis (PCA) or Partial Least Squares (PLS) and multiscale approaches, have been reported to be very useful in the task of fault diagnosis of malfunctioning sensors for several types of faults. In this work, we compare the performance of PCA and Multiscale-PCA on a fault based on a change of sensor sensitivity. This type of fault affects chemical gas sensors and it is one of the effects of the sensor poisoning. These two methods will be applied on a dataset composed by the signals of 17 conductive polymer gas sensors, measuring three analytes at several concentration levels during 10 months. Therefore, additionally to performance's comparison, both method's stability along the time will be tested. The comparison between both techniques will be made regarding three aspects; detection, identification of the faulty sensors and correction of faulty sensors response.

JTD Keywords: Fault diagnosis, Gas sensors, Principal component analysis

Perera, A., Pardo, A., Barrettino, D., Hierlermann, A., Marco, S., (2009). Evaluation of fish spoilage by means of a single metal oxide sensor under temperature modulation Olfaction and Electronic Nose: Proceedings of the 13th International Symposium on Olfaction and Electronic Nose 13th International Symposium on Olfaction and Electronic Nose (ed. Pardo, M., Sberveglieri, G.), Amer Inst Physics (Brescia, Italy) 1137, 483-486

In this paper the feasibility of using metal oxide gas sensor technology for evaluating spoilage process for sea bream (Sparus Aurata) is explored. It is shown that a single sensor under temperature modulation is able to find a correlation with the fish spoilage process

JTD Keywords: Gas sensors, Electrochemical sensors, Chromatography

Perera, A., Rock, F., Montoliu, I., Weimar, U., Marco, S., (2009). Total solvent amount and human panel test predictions using gas sensor fast chromatography and multivariate linear and non-linear processing Olfaction and Electronic Nose: Proceedings of the 13th International Symposium on Olfaction and Electronic Nose 13th International Symposium on Olfaction and the Electronic Nose (ed. Pardo, M., Sberveglieri, G.), Amer Inst Physics (Brescia, Italy) 1137, 572-573

Data from a Gas Sensor based Chromatography instrument is used in order to replicate output from a human panel and the estimation of the total solvent amount measured by and FID device in a packaging application. The system is trained on different packaging sample properties and validated with unseen combinations of materials, varnishes and production processes. This contribution will show the difficulties on the prediction of the output of the human panel, and the success on the prediction of the total amount of solvent in the sample

JTD Keywords: Gas sensors, Solvent prediction