DONATE

Publications

by Keyword: Glass

Valenti, Sofia, del Valle, Luis Javier, Romanini, Michela, Mitjana, Meritxell, Puiggalí, Jordi, Tamarit, Josep Lluís, Macovez, Roberto, (2022). Drug-Biopolymer Dispersions: Morphology- and Temperature- Dependent (Anti)Plasticizer Effect of the Drug and Component-Specific Johari–Goldstein Relaxations International Journal Of Molecular Sciences 23, 2456

Amorphous molecule-macromolecule mixtures are ubiquitous in polymer technology and are one of the most studied routes for the development of amorphous drug formulations. For these applications it is crucial to understand how the preparation method affects the properties of the mixtures. Here, we employ differential scanning calorimetry and broadband dielectric spectroscopy to investigate dispersions of a small-molecule drug (the Nordazepam anxiolytic) in biodegradable polylactide, both in the form of solvent-cast films and electrospun microfibres. We show that the dispersion of the same small-molecule compound can have opposite (plasticizing or antiplasticizing) effects on the segmental mobility of a biopolymer depending on preparation method, temperature, and polymer enantiomerism. We compare two different chiral forms of the polymer, namely, the enantiomeric pure, semicrystalline L-polymer (PLLA), and a random, fully amorphous copolymer containing both L and D monomers (PDLLA), both of which have lower glass transition temperature (Tg) than the drug. While the drug has a weak antiplasticizing effect on the films, consistent with its higher Tg, we find that it actually acts as a plasticizer for the PLLA microfibres, reducing their Tg by as much as 14 K at 30%-weight drug loading, namely, to a value that is lower than the Tg of fully amorphous films. The structural relaxation time of the samples similarly depends on chemical composition and morphology. Most mixtures displayed a single structural relaxation, as expected for homogeneous samples. In the PLLA microfibres, the presence of crystalline domains increases the structural relaxation time of the amorphous fraction, while the presence of the drug lowers the structural relaxation time of the (partially stretched) chains in the microfibres, increasing chain mobility well above that of the fully amorphous polymer matrix. Even fully amorphous homogeneous mixtures exhibit two distinct Johari–Goldstein relaxation processes, one for each chemical component. Our findings have important implications for the interpretation of the Johari–Goldstein process as well as for the physical stability and mechanical properties of microfibres with small-molecule additives.

JTD Keywords: amorphous pharmaceuticals, beta-relaxation, constant loss, crystallization, dielectric spectroscopy, dynamics, formulation morphology, glass transition, molecular mobility, nanofibers, polylactide, polymer enantiomerism, secondary relaxations, valium metabolite, viscous-liquids, Amorphous pharmaceuticals, Glass-transition, Secondary relaxations


Zeinali, Reza, del Valle, Luis J., Franco, Lourdes, Yousef, Ibraheem, Rintjema, Jeroen, Alemán, Carlos, Bravo, Fernando, Kleij, Arjan W., Puiggalí, Jordi, (2022). Biobased Terpene Derivatives: Stiff and Biocompatible Compounds to Tune Biodegradability and Properties of Poly(butylene succinate) Polymers 14, 161

Different copolymers incorporating terpene oxide units (e.g., limonene oxide) have been evaluated considering thermal properties, degradability, and biocompatibility. Thus, polycarbonates and polyesters derived from aromatic, monocyclic and bicyclic anhydrides have been considered. Furthermore, ring substitution with myrcene terpene has been evaluated. All polymers were amorphous when evaluated directly from synthesis. However, spherulites could be observed after the slow evaporation of diluted chloroform solutions of polylimonene carbonate, with all isopropene units possessing an R configuration. This feature was surprising considering the reported information that suggested only the racemic polymer was able to crystallize. All polymers were thermally stable and showed a dependence of the maximum degradation rate temperature (from 242 °C to 342 °C) with the type of terpene oxide. The graduation of glass transition temperatures (from 44 °C to 172 °C) was also observed, being higher than those corresponding to the unsubstituted polymers. The chain stiffness of the studied polymers hindered both hydrolytic and enzymatic degradation while a higher rate was detected when an oxidative medium was assayed (e.g., weight losses around 12% after 21 days of exposure). All samples were biocompatible according to the adhesion and proliferation tests performed with fibroblast cells. Hydrophobic and mechanically consistent films (i.e., contact angles between 90° and 110°) were obtained after the evaporation of chloroform from the solutions, having different ratios of the studied biobased polyterpenes and poly(butylene succinate) (PBS). The blend films were comparable in tensile modulus and tensile strength with the pure PBS (e.g., values of 330 MPa and 7 MPa were determined for samples incorporating 30 wt.% of poly(PA-LO), the copolyester derived from limonene oxide and phthalic anhydride. Blends were degradable, biocompatible and appropriate to produce oriented-pore and random-pore scaffolds via a thermally-induced phase separation (TIPS) method and using 1,4-dioxane as solvent. The best results were attained with the blend composed of 70 wt.% PBS and 30 wt.% poly(PA-LO). In summary, the studied biobased terpene derivatives showed promising properties to be used in a blended form for biomedical applications such as scaffolds for tissue engineering.

JTD Keywords: alternating copolymerization, biobased materials, biodegradability, composites, crystallization, cyclohexene oxide, induced phase-separation, limonene oxide, mechanical-properties, polyesters, scaffolds, spherulites, terpene derivatives, thermal properties, thermally-induced phase separation, Acetone, Bio-based, Bio-based materials, Biobased materials, Biocompatibility, Biodegradability, Butenes, Cell culture, Chlorine compounds, Degradation, Evaporation, Glass transition, Limonene oxide, Monoterpenes, Phase separation, Poly (butylenes succinate), Polybutylene succinate, Property, Ring-opening copolymerization, Scaffolds, Spheru-lites, Tensile strength, Terpene derivatives, Thermal properties, Thermally induced phase separation, Thermally-induced phase separation, Thermally?induced phase separation, Thermodynamic properties, Thermogravimetric analysis


del-Mazo-Barbara L, Ginebra MP, (2021). Rheological characterisation of ceramic inks for 3D direct ink writing: A review Journal Of The European Ceramic Society 41, 18-33

3D printing is a competitive manufacturing technology, which has opened up new possibilities for the fabrication of complex ceramic structures and customised parts. Extrusion-based technologies, also known as direct ink writing (DIW) or robocasting, are amongst the most used for ceramic materials. In them, the rheological properties of the ink play a crucial role, determining both the extrudability of the paste and the shape fidelity of the printed parts. However, comprehensive rheological studies of printable ceramic inks are scarce and may be difficult to understand for non-specialists. The aim of this review is to provide an overview of the main types of ceramic ink formulations developed for DIW and a detailed description of the more relevant rheological tests for assessing the printability of ceramic pastes. Moreover, the key rheological parameters are identified and linked to printability aspects, including the values reported in the literature for different ink compositions.

JTD Keywords: 3-dimensional structures, behavior, deposition, direct ink writing, freeform fabrication, gelation, glass scaffolds, mechanical-properties, printability, rheology, robocasting, suspensions, 3d printing, Direct ink writing, Phosphate scaffolds, Printability, Rheology, Robocasting


Perez-Amodio, Soledad, Rubio, Nuria, Vila, Olaia F, Navarro-Requena, Claudia, Castano, Oscar, Sanchez-Ferrero, Aitor, Marti-Munoz, Joan, Alsina-Giber, Merce, Blanco, Jeronimo, Engel, Elisabeth, (2021). Polymeric Composite Dressings Containing Calcium-Releasing Nanoparticles Accelerate Wound Healing in Diabetic Mice Advances In Wound Care 10, 301-316

Objective: Wound healing is a complex process that involves the interaction between different cell types and bioactive factors. Impaired wound healing is characterized by a loss in synchronization of these interactions, resulting in nonhealing chronic wounds. Chronic wounds are a socioeconomic burden, one of the most prominent clinical manifestations of diabetes, however, they lack satisfactory treatment options. The objective of this study was to develop polymeric composites that deliver ions having wound healing properties and evaluate its performance using a pressure ulcer model in diabetic mice. Approach: To develop a polymeric composite wound dressing containing ion-releasing nanoparticles for chronic wound healing. This composite was chemically and physically characterized and evaluated using a pressure ulcer wound model in diabetic (db/db) mice to explore their potential as novel wound dressing. Results: This dressing exhibits a controlled ion release and a goodin vitrobioactivity. The polymeric composite dressing treatment stimulates angiogenesis, collagen synthesis, granulation tissue formation, and accelerates wound closure of ischemic wounds created in diabetic mice. In addition, the performance of the newly designed composite is remarkably better than a commercially available dressing frequently used for the treatment of low-exuding chronic wounds. Innovation: The developed nanoplatforms are cell- and growth factor free and control the host microenvironment resulting in enhanced wound healing. These nanoplatforms are available by cost-effective synthesis with a defined composition, offering an additional advantage in potential clinical application. Conclusion: Based on the obtained results, these polymeric composites offer an optimum approach for chronic wound healing without adding cells or external biological factors.

JTD Keywords: angiogenesis, bioactive dressings, chronic wounds, Angiogenesis, Bioactive dressings, Bioactive glass, Bioglass, Cells, Chronic wounds, Diabetes, Endothelial growth-factor, Expression, Hydrogel, Induction


Majchrowicz, A., Roguska, A., Krawczy, Lewandowska, M., Martí-Muñoz, J., Engel, E., Castano, O., (2020). In vitro evaluation of degradable electrospun polylactic acid/bioactive calcium phosphate ormoglass scaffolds Archives of Civil and Mechanical Engineering 20, (2), 50

Nowadays, the main limitation for clinical application of scaffolds is considered to be an insufficient vascularization of the implanted platforms and healing tissues. In our studies, we proposed a novel PLA-based hybrid platform with aligned and random fibrous internal structure and incorporated calcium phosphate (CaP) ormoglass nanoparticles (0, 10, 20 and 30 wt%) as an off-the-shelf method for obtaining scaffolds with pro-angiogenic properties. Complex morphological and physicochemical evaluation of PLA–CaP ormoglass composites was performed before and after in vitro degradation test in SBF solution to assess their biological potential. The degradation process of PLA–CaP ormoglass composites was accompanied by numerous CaP-based precipitations with extended topography and cauliflower-like shape which may enhance bonding of the material with the bone tissue and accelerate the regenerative process. Random fiber orientation was preferable for CaP compounds deposition upon in vitro degradation. CaP compounds precipitated firstly for randomly oriented composite nonwovens with 20 and 30 wt% addition of ormoglass. Moreover, the preliminary bioactivity test has shown that BSA adsorbed to PLA–CaP ormoglass composites (both aligned and randomly oriented) with 20 and 30 wt% of ormoglass nanoparticles which was not observed for pure PLA scaffolds.

JTD Keywords: Calcium phosphate ormoglass, Composites, Degradation, Electrospinning, PLA


Valenti, S., Yousefzade, O., Puiggalí, J., Macovez, R., (2020). Phase-selective conductivity enhancement and cooperativity length in PLLA/TPU nanocomposite blends with carboxylated carbon nanotubes Polymer 191, 122279

Transmission electron microscopy, temperature-modulated differential scanning calorimetry, and broadband dielectric spectroscopy were employed to characterize ternary nanocomposites consisting of carboxylated carbon nanotubes (CNT) dispersed in a blend of two immiscible polymers, poly(L,lactide) (PLLA) and thermoplastic polyurethane (TPU). The nanocomposite blends were obtained by melt-compounding of PLLA and TPU in the presence of 0.2 wt-% CNT, either in the presence or absence of a Joncryl® ADR chain extender for PLLA, leading to reactive and non-reactive melt mixed samples. In both cases, the binary PLLA/TPU blend is characterized by phase separation into submicron TPU droplets dispersed in the PLLA matrix, and displays two separate glass transition temperatures. The carbon nanotubes are present either inside the TPU phase (samples obtained without chain extender), or at their boundaries (reactive-melt mixed samples). The effect of the sub-micron confinement of the TPU component is to decrease the cooperativity length of the primary segmental relaxation of this polymer, which is accentuated by the presence of the CNT fillers. Depending on the type of sample, five or six distinct relaxations are observed by means of dielectric spectroscopy, which we are able to assign to different dielectric phenomena. Our dielectric data show that the CNT fillers do not contribute directly to the long-range charge transport in the nanocomposite blends, consistent with the nanocomposites morphology, but rather result in a shift of the Maxwell-Wagner-Sillars space-charge frequency associated with charge accumulation at the PLLA/TPU boundary. Such shift testifies to a selective conductivity enhancement of the TPU phase due to the filler.

JTD Keywords: Conductivity enhancement, Cooperatively rearranging region, Dielectric spectroscopy, Glass transition, Maxwell-Wagner-Sillars relaxation, Nanofiller


Marti-Muñoz, Joan, Xuriguera, Elena, Layton, John W., Planell, Josep A., Rankin, Stephen E., Engel, Elisabeth, Castaño, Oscar, (2019). Feasible and pure P2O5-CaO nanoglasses: An in-depth NMR study of synthesis for the modulation of the bioactive ion release Acta Biomaterialia 94, 574-584

The use of bioactive glasses (e.g. silicates, phosphates, borates) has demonstrated to be an effective therapy for the restoration of bone fractures, wound healing and vascularization. Their partial dissolution towards the surrounding tissue has shown to trigger positive bioactive responses, without the necessity of using growth factors or cell therapy, which reduces money-costs, side effects and increases their translation to the clinics. However, bioactive glasses often need from stabilizers (e.g. SiO44−, Ti4+, Co2+, etc.) that are not highly abundant in the body and which metabolization is not fully understood. In this study, we were focused on synthesizing pure calcium phosphate glasses without the presence of such stabilizers. We combined a mixture of ethylphosphate and calcium 2-methoxyethoxide to synthesize nanoparticles with different compositions and degradability. Synthesis was followed by an in-depth nuclear magnetic resonance characterization, complemented with other techniques that helped us to correlate the chemical structure of the glasses with their physiochemical properties and reaction mechanism. After synthesis, the organically modified xerogel (i.e. calcium monoethylphosphate) was treated at 200 or 350 °C and its solubility was maintained and controlled due to the elimination of organics, increase of phosphate-calcium interactions and phosphate polycondensation. To the best of our knowledge, we are reporting the first sol-gel synthesis of binary (P2O5-CaO) calcium phosphate glass nanoparticles in terms of continuous polycondensated phosphate chains structure without the addition of extra ions. The main goal is to straightforward the synthesis, to get a safer metabolization and to modulate the bioactive ion release. Additionally, we shed light on the chemical structure, reaction mechanism and properties of calcium phosphate glasses with high calcium contents, which nowadays are poorly understood. Statement of Significance The use of bioactive inorganic materials (i.e. bioactive ceramics, glass-ceramics and glasses) for biomedical applications is attractive due to their good integration with the host tissue without the necessity of adding exogenous cells or growth factors. In particular, degradable calcium phosphate glasses are completely resorbable, avoiding the retention in the body of the highly stable silica network of silicate glasses, and inducing a more controllable degradability than bioactive ceramics. However, most calcium phosphate glasses include the presence of stabilizers (e.g. Ti4+, Na+, Co2+), which metabolization is not fully understood and complicates their synthesis. The development of binary calcium phosphate glasses with controlled degradability reduces these limitations, offering a simple and completely metabolizable material with higher transfer to the clinics.

JTD Keywords: Calcium phosphate glasses, Sol-gel process, NMR spectroscopy, Ion release, Biomaterials


Sebastian, P., Giannotti, M. I., Gómez, E., Feliu, J. M., (2018). Surface sensitive nickel electrodeposition in deep eutectic solvent ACS Applied Energy Materials , 1, (3), 1016-1028

The first steps of nickel electrodeposition in a deep eutectic solvent (DES) are analyzed in detail. Several substrates from glassy carbon to Pt(111) were investigated pointing out the surface sensitivity of the nucleation and growth mechanism. For that, cyclic voltammetry and chronoamperometry, in combination with scanning electron microscopy (SEM), were employed. X-ray diffraction (XRD) and atomic force microscopy (AFM) were used to more deeply analyze the Ni deposition on Pt substrates. In a 0.1 M NiCl2 + DES solution (at 70 °C), the nickel deposition on glassy carbon takes place within the potential limits of the electrode in the blank solution. Although, the electrochemical window of Pt|DES is considerably shorter than on glassy carbon|DES, it was still sufficient for the nickel deposition. On the Pt electrode, the negative potential limit was enlarged while the nickel deposit grew, likely because of the lower catalytic activity of the nickel toward the reduction of the DES. At lower overpotentials, different hydrogenated Ni structures were favored, most likely because of the DES co-reduction on the Pt substrate. Nanometric metallic nickel grains of rounded shape were obtained on any substrate, as evidenced by the FE-SEM. Passivation phenomena, related to the formation of Ni oxide and Ni hydroxylated species, were observed at high applied overpotentials. At low deposited charge, on Pt(111) the AFM measurements showed the formation of rounded nanometric particles of Ni, which rearranged and formed small triangular arrays at sufficiently low applied overpotential. This particle pattern was induced by the (111) orientation and related to surface sensitivity of the nickel deposition in DES. The present work provides deep insights into the Ni electrodeposition mechanism in the selected deep eutectic solvent.

JTD Keywords: AFM, Deep eutectic solvent, Glassy carbon, Nanostructures, Nickel electrodeposition, Platinum electrode, Pt(111), SEM, Surface sensitive


Navarro-Requena, Claudia, Weaver, Jessica D., Clark, Amy Y., Clift, Douglas A., Pérez-Amodio, Soledad, Castaño, Óscar, Zhou, Dennis W., García, Andrés J., Engel, Elisabeth, (2018). PEG hydrogel containing calcium-releasing particles and mesenchymal stromal cells promote vessel maturation Acta Biomaterialia 67, 53-65

The use of human mesenchymal stromal cells (hMSC) for treating diseased tissues with poor vascularization has received significant attention, but low cell survival has hampered its translation to the clinic. Bioglasses and glass-ceramics have also been suggested as therapeutic agents for stimulating angiogenesis in soft tissues, but these effects need further evaluation in vivo. In this study, calcium-releasing particles and hMSC were combined within a hydrogel to examine their vasculogenic potential in vitro and in vivo. The particles provided sustained calcium release and showed proangiogenic stimulation in a chorioallantoic membrane (CAM) assay. The number of hMSC encapsulated in a degradable RGD-functionalized PEG hydrogel containing particles remained constant over time and IGF-1 release was increased. When implanted in the epidydimal fat pad of immunocompromised mice, this composite material improved cell survival and stimulated vessel formation and maturation. Thus, the combination of hMSC and calcium-releasing glass-ceramics represents a new strategy to achieve vessel stabilization, a key factor in the revascularization of ischemic tissues. Statement of Significance: Increasing blood vessel formation in diseased tissues with poor vascularization is a current clinical challenge. Cell therapy using human mesenchymal stem cells has received considerable interest, but low cell survival has hampered its translation to the clinic. Bioglasses and glass-ceramics have been explored as therapeutic agents for stimulating angiogenesis in soft tissues, but these effects need further evaluation in vivo. By incorporating both human mesenchymal stem cells and glass-ceramic particles in an implantable hydrogel, this study provides insights into the vasculogenic potential in soft tissues of the combined strategies. Enhancement of vessel formation and maturation supports further investigation of this strategy.

JTD Keywords: Calcium, Glass-ceramic particles, Vascularization, hMSC, Hydrogel


Barbeck, Mike, Serra, Tiziano, Booms, Patrick, Stojanovic, Sanja, Najman, Stevo, Engel, Elisabeth, Sader, Robert, Kirkpatrick, Charles James, Navarro, Melba, Ghanaati, Shahram, (2017). Analysis of the in vitro degradation and the in vivo tissue response to bi-layered 3D-printed scaffolds combining PLA and biphasic PLA/bioglass components – Guidance of the inflammatory response as basis for osteochondral regeneration Bioactive Materials , 2, (4), 208-223

Abstract The aim of the present study was the in vitro and in vivo analysis of a bi-layered 3D-printed scaffold combining a PLA layer and a biphasic PLA/bioglass G5 layer for regeneration of osteochondral defects in vivo Focus of the in vitro analysis was on the (molecular) weight loss and the morphological and mechanical variations after immersion in SBF. The in vivo study focused on analysis of the tissue reactions and differences in the implant bed vascularization using an established subcutaneous implantation model in CD-1 mice and established histological and histomorphometrical methods. Both scaffold parts kept their structural integrity, while changes in morphology were observed, especially for the PLA/G5 scaffold. Mechanical properties decreased with progressive degradation, while the PLA/G5 scaffolds presented higher compressive modulus than PLA scaffolds. The tissue reaction to PLA included low numbers of BMGCs and minimal vascularization of its implant beds, while the addition of G5 lead to higher numbers of BMGCs and a higher implant bed vascularization. Analysis revealed that the use of a bi-layered scaffold shows the ability to observe distinct in vivo response despite the physical proximity of PLA and PLA/G5 layers. Altogether, the results showed that the addition of G5 enables to reduce scaffold weight loss and to increase mechanical strength. Furthermore, the addition of G5 lead to a higher vascularization of the implant bed required as basis for bone tissue regeneration mediated by higher numbers of BMGCs, while within the PLA parts a significantly lower vascularization was found optimally for chondral regeneration. Thus, this data show that the analyzed bi-layered scaffold may serve as an ideal basis for the regeneration of osteochondral tissue defects. Additionally, the results show that it might be able to reduce the number of experimental animals required as it may be possible to analyze the tissue response to more than one implant in one experimental animal.

JTD Keywords: Bioactive glass, Polylactic acid (PLA), Bi-layer scaffold, Multinucleated giant cells, Bone substitute, Vascularization, Calcium phosphate glass


Oliveira, H., Catros, S., Castano, O., Rey, Sylvie, Siadous, R., Clift, D., Marti-Munoz, J., Batista, M., Bareille, R., Planell, J., Engel, E., Amédée, J., (2017). The proangiogenic potential of a novel calcium releasing composite biomaterial: Orthotopic in vivo evaluation Acta Biomaterialia 54, 377-385

Insufficient angiogenesis remains a major hurdle in current bone tissue engineering strategies. An extensive body of work has focused on the use of angiogenic factors or endothelial progenitor cells. However, these approaches are inherently complex, in terms of regulatory and methodologic implementation, and present a high cost. We have recently demonstrate the potential of electrospun poly(lactic acid) (PLA) fiber-based membranes, containing calcium phosphate (CaP) ormoglass particles, to elicit angiogenesis in vivo, in a subcutaneous model in mice. Here we have devised an injectable composite, containing CaP glass-ceramic particles, dispersed within a (Hydroxypropyl)methyl cellulose (HPMC) matrix, with the capacity to release calcium in a more sustained fashion. We show that by tuning the release of calcium in vivo, in a rat bone defect model, we could improve both bone formation and increase angiogenesis. The bone regeneration kinetics was dependent on the Ca2+ release rate, with the faster Ca2+ release composite gel showing improved bone repair at 3 weeks, in relation to control. In the same line, improved angiogenesis could be observed for the same gel formulation at 6 weeks post implantation. This methodology allows to integrate two fundamental processes for bone tissue regeneration while using a simple, cost effective, and safe approach. Statement of Significance In current bone tissue engineering approaches the achievement of sufficient angiogenesis, during tissue regeneration, is a major limitation in order to attain full tissue functionality. Recently, we have shown that calcium ions, released by the degradation of calcium phosphate ormoglasses (CaP), are effective angiogenic promoters, in both in vitro and in a subcutaneous implantation model. Here, we devised an injectable composite, containing CaP glass-ceramic particles, dispersed within a HPMC matrix, enabling the release of calcium in a more sustained fashion. We show that by tuning the release of calcium in vivo, in a rat bone defect model, we could improve both bone formation and increase angiogenesis. This simple and cost effective approach holds great promise to translate to the clinics.

JTD Keywords: Angiogenesis, Bone regeneration, Calcium phosphate ormoglasses


Sachot, N., Roguska, A., Planell, J. P., Lewandowska, M., Engel, E., Castaño, O., (2017). Fast-degrading PLA/ORMOGLASS fibrous composite scaffold leads to a calcium-rich angiogenic environment International Journal of Nanomedicine 12, 4901-4919

The success of scaffold implantation in acellular tissue engineering approaches relies on the ability of the material to interact properly with the biological environment. This behavior mainly depends on the design of the graft surface and, more precisely, on its capacity to biodegrade in a well-defined manner (nature of ions released, surface-to-volume ratio, dissolution profile of this release, rate of material resorption, and preservation of mechanical properties). The assessment of the biological behavior of temporary templates is therefore very important in tissue engineering, especially for composites, which usually exhibit complicated degradation behavior. Here, blended polylactic acid (PLA) calcium phosphate ORMOGLASS (organically modified glass) nanofibrous mats have been incubated up to 4 weeks in physiological simulated conditions, and their morphological, topographical, and chemical changes have been investigated. The results showed that a significant loss of inorganic phase occurred at the beginning of the immersion and the ORMOGLASS maintained a stable composition afterward throughout the degradation period. As a whole, the nanostructured scaffolds underwent fast and heterogeneous degradation. This study reveals that an angiogenic calcium-rich environment can be achieved through fast-degrading ORMOGLASS/PLA blended fibers, which seems to be an excellent alternative for guided bone regeneration.

JTD Keywords: Angiogenesis, Calcium release, Electrospinning, Fast degradation, Nanofibers, ORMOGLASSES


Oliveira, Hugo, Catros, Sylvain, Boiziau, Claudine, Siadous, Robin, Marti-Munoz, Joan, Bareille, Reine, Rey, Sylvie, Castano, Oscar, Planell, Josep, Amédée, Joëlle, Engel, Elisabeth, (2016). The proangiogenic potential of a novel calcium releasing biomaterial: Impact on cell recruitment Acta Biomaterialia 29, 435-445

Abstract In current bone tissue engineering strategies the achievement of sufficient angiogenesis during tissue regeneration is still a major limitation in order to attain full functionality. Several strategies have been described to tackle this problem, mainly by the use of angiogenic factors or endothelial progenitor cells. However, when facing a clinical scenario these approaches are inherently complex and present a high cost. As such, more cost effective alternatives are awaited. Here, we demonstrate the potential of electrospun poly(lactic acid) (PLA) fiber-based membranes, containing calcium phosphate ormoglass (CaP) particles, to elicit angiogenesis in vivo, in a subcutaneous model in mice. We show that the current approach elicited the local expression of angiogenic factors, associated to a chemotactic effect on macrophages, and sustained angiogenesis into the biomaterial. As both PLA and CaP are currently accepted for clinical application these off-the-shelf novel membranes have great potential for guided bone regeneration applications. Statement of significance In current bone tissue engineering approaches the achievement of sufficient angiogenesis, during tissue regeneration, is a major limitation in order to attain full tissue functionality. Recently, our group has found that calcium ions released by the degradation of calcium phosphate ormoglasses (CaP) are effective angiogenic promoters. Based on this, in this work we successfully produced hybrid fibrous mats with different contents of CaP nanoparticles and thus with different calcium ion release rates, using an ormoglass – poly(lactic acid) blend approach. We show that these matrices, upon implantation in a subcutaneous site, could elicit the local expression of angiogenic factors, associated to a chemotactic effect on macrophages, and sustained angiogenesis into the biomaterial, in a CaP dose dependent manner. This off-the-shelf cost effective approach presents great potential to translate to the clinics.

JTD Keywords: Angiogenesis, Bone regeneration, Calcium phosphate ormoglass


Sachot, Nadège, Castano, Oscar, Planell, Josep A., Engel, Elisabeth, (2015). Optimization of blend parameters for the fabrication of polycaprolactone-silicon based ormoglass nanofibers by electrospinning Journal of Biomedical Materials Research - Part B: Applied Biomaterials , 103, (6), 1287–1293

Electrospinning is a method that can be used to efficiently produce scaffolds that mimic the fibrous structure of natural tissue, such as muscle structures or the extracellular matrix of bone. The technique is often used as a way of depositing composites (organic/inorganic materials) to obtain bioactive nanofibers which have the requisite mechanical properties for use in tissue engineering. However, many factors can influence the formation and collection of fibers, including experimental variables such as the parameters of the solution of the electrospun slurry. In this study, we assessed the influence of the polymer concentration, glass content and glass hydrolysis level on the morphology and thickness of fibers produced by electrospinning for a PCL-(Si-Ca-P2) bioactive ormoglass—organically modified glass—blend. Based on previous assays, this combination of materials shows good angiogenic and osteogenic properties, which gives it great potential for use in tissue engineering. The results of our study showed that blend preparation directly affected the features of the resulting fibers, and when the parameters of the blend are precisely controlled, fibers with a regular diameter could be produced fairly easily when 2,2,2-trifluoroethanol was used as a solvent instead of tetrahydrofuran. The diameter of the homogeneous fibers ranged from 360 to 620 nm depending on the experimental conditions used. This demonstrates that experimental optimization of the electrospinning process is crucial in order to obtain a deposit of hybrid nanofibers with a regular shape.

JTD Keywords: Si-based glasses, Ormoglass, Electrospinning, Hybrid materials, Bioactivity, Angiogenesis


Won, J. E., Mateos-Timoneda, M. A., Castaño, O., Planell, J. A., Seo, S. J., Lee, E. J., Han, C. M., Kim, H. W., (2015). Fibronectin immobilization on to robotic-dispensed nanobioactive glass/polycaprolactone scaffolds for bone tissue engineering Biotechnology Letters , 37, (4), 935-342

Bioactive nanocomposite scaffolds with cell-adhesive surface have excellent bone regeneration capacities. Fibronectin (FN)-immobilized nanobioactive glass (nBG)/polycaprolactone (PCL) (FN-nBG/PCL) scaffolds with an open pore architecture were generated by a robotic-dispensing technique. The surface immobilization level of FN was significantly higher on the nBG/PCL scaffolds than on the PCL scaffolds, mainly due to the incorporated nBG that provided hydrophilic chemical-linking sites. FN-nBG/PCL scaffolds significantly improved cell responses, including initial anchorage and subsequent cell proliferation. Although further in-depth studies on cell differentiation and the in vivo animal responses are required, bioactive nanocomposite scaffolds with cell-favoring surface are considered to provide promising three-dimensional substrate for bone regeneration.

JTD Keywords: Bone scaffolds, Cell response, Fibronectin, Nanobioactive glass, Nanocomposites, Polycaprolactone, Bone, Cell proliferation, Cells, Cytology, Glass, Nanocomposites, Polycaprolactone, Robotics, Bone scaffolds, Bone tissue engineering, Cell response, Fibronectin, Fibronectin immobilizations, Nano bioactive glass, Nanocomposite scaffolds, Three-dimensional substrates, Scaffolds (biology)


Castaño, O., Sachot, N., Xuriguera, E., Engel, E., Planell, J. A., Park, J. H., Jin, G. Z., Kim, T. H., Kim, J. H., Kim, H. W., (2014). Angiogenesis in bone regeneration: Tailored calcium release in hybrid fibrous scaffolds ACS Applied Materials & Interfaces 6, (10), 7512-7522

In bone regeneration, silicon-based calcium phosphate glasses (Bioglasses) have been widely used since the 1970s. However, they dissolve very slowly because of their high amount of Si (SiO2 > 45%). Recently, our group has found that calcium ions released by the degradation of glasses in which the job of silicon is done by just 5% of TiO2 are effective angiogenic promoters, because of their stimulation of a cell-membrane calcium sensing receptor (CaSR). Based on this, other focused tests on angiogenesis have found that Bioglasses also have the potential to be angiogenic promoters even with high contents of silicon (80%); however, their slow degradation is still a problem, as the levels of silicon cannot be decreased any lower than 45%. In this work, we propose a new generation of hybrid organically modified glasses, ormoglasses, that enable the levels of silicon to be reduced, therefore speeding up the degradation process. Using electrospinning as a faithful way to mimic the extracellular matrix (ECM), we successfully produced hybrid fibrous mats with three different contents of Si (40, 52, and 70%), and thus three different calcium ion release rates, using an ormoglass–polycaprolactone blend approach. These mats offered a good platform to evaluate different calcium release rates as osteogenic promoters in an in vivo subcutaneous environment. Complementary data were collected to complement Ca2+ release analysis, such as stiffness evaluation by AFM, ζ-potential, morphology evaluation by FESEM, proliferation and differentiation analysis, as well as in vivo subcutaneous implantations. Material and biological characterization suggested that compositions of organic/inorganic hybrid materials with a Si content equivalent to 40%, which were also those that released more calcium, were osteogenic. They also showed a greater ability to form blood vessels. These results suggest that Si-based ormoglasses can be considered an efficient tool for calcium release modulation, which could play a key role in the angiogenic promoting process.

JTD Keywords: Biological materials, Blood vessels, Calcium, Electrospinning, Glass, Hybrid materials, Silicon oxides, Sol-gel process, Sol-gels, Angiogenesis, Biological characterization, Calcium phosphate glass, Calcium-sensing receptors, Degradation process, Extracellular matrices, Organic/inorganic hybrid materials, ormoglasses, Silicon


Sanzana, E. S., Navarro, M., Ginebra, M. P., Planell, J. A., Ojeda, A. C., Montecinos, H. A., (2014). Role of porosity and pore architecture in the in vivo bone regeneration capacity of biodegradable glass scaffolds Journal of Biomedical Materials Research - Part A , 102, (6), 1767-1773

The aim of this work is to shed light on the role of porosity and pore architecture in the in vivo bone regeneration capacity of biodegradable glass scaffolds. A calcium phosphate glass in the system P2O5-CaO-Na2O-TiO2 was foamed using two different porogens, namely albumen and hydrogen peroxide (H2O2); the resulting three-dimensional porous structures were characterized and implanted in New Zealand rabbits to study their in vivo behavior. Scaffolds foamed with albumen displayed a monomodal pore size distribution centered around 150 μm and a porosity of 82%, whereas scaffolds foamed with H2O2 showed lower porosity (37%), with larger elongated pores, and multimodal size distribution. After 12 weeks of implantation, histology results revealed a good osteointegration for both types of scaffolds. The quantitative morphometric analysis showed the substitution of the biomaterial by new bone in the case of glasses foamed with albumen. In contrast, bone neoformation and material resorption were significantly lower in the defects filled with the scaffolds foamed with H2O2. The results obtained in this study showed that both calcium phosphate glass scaffolds were osteoconductive, biocompatible, and biodegradable materials. However, differences in porosity, pore architecture, and microstructure led to substantially different in vivo response.

JTD Keywords: Bone substitutes, Calcium phosphate glasses, in vivo, Scaffolds, Tissue engineering


Sachot, N., Engel, E., Castaño, O., (2014). Hybrid organic-inorganic scaffolding biomaterials for regenerative therapies Current Organic Chemistry , 18, (18), 2299-2314

The introduction of hybrid materials in regenerative medicine has solved some problems related to the mechanical and bioactive properties of biomaterials. Calcium phosphates and their derivatives have provided the basis for inorganic components, thanks to their good bioactivity, especially in bone regeneration. When mixed with biodegradable polymers, the result is a synergic association that mimics the composition of many tissues of the human body and, additionally, exhibits suitable mechanical properties. Together with the development of nanotechnology and new synthesis methods, hybrids offer a promising option for the development of a third or fourth generation of smart biomaterials and scaffolds to guide the regeneration of natural tissues, with an optimum efficiency/cost ratio. Their potential bioactivity, as well as other valuable features of hybrids, open promising new pathways for their use in bone regeneration and other tissue repair therapies. This review provides a comprehensive overview of the different hybrid organic-inorganic scaffolding biomaterials developed so far for regenerative therapies, especially in bone. It also looks at the potential for research into hybrid materials for other, softer tissues, which is still at an initial stage, but with very promising results.

JTD Keywords: Biodegradable polymer, Hybrid materials, Nanoparticles, Ormoglass


Aguirre, A., Gonzalez, A., Navarro, M., Castano, O., Planell, J. A., Engel, E., (2012). Control of microenvironmental cues with a smart biomaterial composite promotes endothelial progenitor cell angiogenesis European Cells & Materials , 24, 90-106

Smart biomaterials play a key role when aiming at successful tissue repair by means of regenerative medicine approaches, and are expected to contain chemical as well as mechanical cues that will guide the regenerative process. Recent advances in the understanding of stem cell biology and mechanosensing have shed new light onto the importance of the local microenvironment in determining cell fate. Herein we report the biological properties of a bioactive, biodegradable calcium phosphate glass/polylactic acid composite biomaterial that promotes bone marrow-derived endothelial progenitor cell (EPC) mobilisation, differentiation and angiogenesis through the creation of a controlled bone healing-like microenvironment. The angiogenic response is triggered by biochemical and mechanical cues provided by the composite, which activate two synergistic cell signalling pathways: a biochemical one mediated by the calcium-sensing receptor and a mechanosensitive one regulated by non-muscle myosin II contraction. Together, these signals promote a synergistic response by activating EPCs-mediated VEGF and VEGFR-2 synthesis, which in turn promote progenitor cell homing, differentiation and tubulogenesis. These findings highlight the importance of controlling microenvironmental cues for stem/progenitor cell tissue engineering and offer exciting new therapeutical opportunities for biomaterialbased vascularisation approaches and clinical applications.

JTD Keywords: Calcium phosphate glass composite, Smart biomaterial, Endothelial progenitor cell, Angiogenesis, Mechanosensing, Calcium-sensing receptor


Serra, T., Navarro, M., Planell, J. A., (2012). Fabrication and characterization of biodegradable composite scaffolds for tissue engineering Innovative Developments in Virtual and Physical Prototyping 5th International Conference on Advanced Research and Rapid Prototyping (ed. Margarida, T., Ferreira, D.), Taylor & Francis (Leiria, Portugal) VR@P, 67-72

In this study, polylactic acid (PLA) and polyethylene glycol (PEG) were combined with soluble CaP glass particles and processed by rapid prototyping to obtain fully biodegradable structures for Tissue Engineering applications. The obtained 3D biodegradable structures were characterized in terms of their architecture and mechanical properties. The scaffold morphology, internal micro-architecture and mechanical properties were evaluated using Scanning Electron Microscopy (SEM), micro-computed tomography (micro-CT) and mechanical testing, respectively. Well defined structures with pore size of 350-400μm (in the axial view), struts width of approximately 70-80μm, and a porosity ranging between 60-65% were obtained. The combination RP and PLA/PEG/CaP glass turned into promising fully degradable, mechanically stable, bioactive and biocompatible composite scaffolds for TE.

JTD Keywords: Axial view, Biodegradable composites, Composite scaffolds, Glass particles, Mechanically stable, Micro architectures, Micro computed tomography (micro-CT), Poly lactic acid, Scaffold morphology, Tissue engineering applications, Well-defined structures, Bioactive glass, Mechanical properties, Mechanical testing, Polyethylene glycols, Polymer blends, Rapid prototyping, Scaffolds (biology), Scanning electron microscopy, Computerized tomography


Fumagalli, L., Gramse, G., Esteban-Ferrer, D., Edwards, M. A., Gomila, G., (2010). Quantifying the dielectric constant of thick insulators using electrostatic force microscopy Applied Physics Letters , 96, (18), 183107

Quantitative measurement of the low-frequency dielectric constants of thick insulators at the nanoscale is demonstrated utilizing ac electrostatic force microscopy combined with finite-element calculations based on a truncated cone with hemispherical apex probe geometry. The method is validated on muscovite mica, borosilicate glass, poly(ethylene naphthalate), and poly(methyl methacrylate). The dielectric constants obtained are essentially given by a nanometric volume located at the dielectric-air interface below the tip, independently of the substrate thickness, provided this is on the hundred micrometer-length scale, or larger.

JTD Keywords: Borosilicate glasses, Finite element analysis, Insulating thin films, Mica, Nanostructured materials, Permittivity, Polymers, Scanning probe microscopy


Sunyer, R., Trepat, X., Fredberg, J. J., Farre, R., Navajas, D., (2009). The temperature dependence of cell mechanics measured by atomic force microscopy Physical Biology 6, (2), 25009

The cytoskeleton is a complex polymer network that regulates the structural stability of living cells. Although the cytoskeleton plays a key role in many important cell functions, the mechanisms that regulate its mechanical behaviour are poorly understood. Potential mechanisms include the entropic elasticity of cytoskeletal filaments, glassy-like inelastic rearrangements of cross-linking proteins and the activity of contractile molecular motors that sets the tensional stress (prestress) borne by the cytoskeleton filaments. The contribution of these mechanisms can be assessed by studying how cell mechanics depends on temperature. The aim of this work was to elucidate the effect of temperature on cell mechanics using atomic force microscopy. We measured the complex shear modulus (G*) of human alveolar epithelial cells over a wide frequency range (0.1-25.6 Hz) at different temperatures (13-37 degrees C). In addition, we probed cell prestress by mapping the contractile forces that cells exert on the substrate by means of traction microscopy. To assess the role of actomyosin contraction in the temperature-induced changes in G* and cell prestress, we inhibited the Rho kinase pathway of the myosin light chain phosphorylation with Y-27632. Our results show that with increasing temperature, cells become stiffer and more solid-like. Cell prestress also increases with temperature. Inhibiting actomyosin contraction attenuated the temperature dependence of G* and prestress. We conclude that the dependence of cell mechanics with temperature is dominated by the contractile activity of molecular motors.

JTD Keywords: Membrane Stress Failure, Frog Skeletal-Muscle, Extracellular-Matrix, Glass-Transition, Energy Landscape, Actin-Filaments, Living Cell, Single, Traction, Cytoskeleton


Sanzana, E. S., Navarro, M., Macule, F., Suso, S., Planell, J. A., Ginebra, M. P., (2008). Of the in vivo behavior of calcium phosphate cements and glasses as bone substitutes Acta Biomaterialia 4, (6), 1924-1933

The use of injectable self-setting calcium phosphate cements or soluble glass granules represent two different strategies for bone regeneration, each with distinct advantages and potential applications. This study compares the in vivo behavior of two calcium phosphate cements and two phosphate glasses with different composition, microstructure and solubility, using autologous bone as a control, in a rabbit model. The implanted materials were alpha-tricalcium phosphate cement (cement H), calcium sodium potassium phosphate cement (cement R), and two phosphate glasses in the P2O5-CaO-Na2O and P2O5-CaO-Na2O-TiO2 systems. The four materials were osteoconductive, biocompatible and biodegradable. Radiological and histological studies demonstrated correct osteointegration and substitution of the implants by new bone. The reactivity of the different materials, which depends on their solubility, porosity and specific surface area, affected the resorption rate and bone formation mainly during the early stages of implantation, although this effect was weak. Thus, at 4 weeks the degradation was slightly higher in cements than in glasses, especially for cement R. However, after 12 weeks of implantation all materials showed a similar degradation degree and promoted bone neoformation equivalent to that of the control group.

JTD Keywords: Calcium phosphates, Calcium phosphate cements, Phosphate glasses, Bone grafts, Bone regenerations


Navarro, M., Engel, E., Planell, J. A., Amaral, I., Barbosa, M., Ginebra, M. P., (2008). Surface characterization and cell response of a PLA/CaP glass biodegradable composite material Journal of Biomedical Materials Research - Part A , 85A, (2), 477-486

Bioabsorbable materials are of great interest for bone regeneration applications, since they are able to degrade gradually as new tissue is formed. In this work, a fully biodegradable composite material containing polylactic acid (PLA) and calcium phosphate (CaP) soluble glass particles has been characterized in terms of surface properties and cell response. Cell cultures were performed in direct contact with the materials and also with their extracts, and were evaluated using the MTT assay, alkaline phosphatase activity, and osteocalcin measurements. The CaP glass and PLA were used as reference materials. No significant differences were observed in cell proliferation with the extracts containing the degradation by-products of the three materials studied. A relation between the materials wettability and the material-cell interactions at the initial stages of contact was observed. The most hydrophilic material (CaP glass) presented the highest cell adhesion values as well as an earlier differentiation, followed by the PLA/glass material. The incorporation of glass particles into the PLA matrix increased surface roughness. SEM images showed that the heterogeneity of the composite material induced morphological changes in the cells cytoskeleton.

JTD Keywords: Glass, Polylactic acid, Surface analysis, Cell culture, In vitro test


Charles-Harris, M., del Valle, S., Hentges, E., Bleuet, P., Lacroix, D., Planell, J. A., (2007). Mechanical and structural characterisation of completely degradable polylactic acid/calcium phosphate glass scaffolds Biomaterials 28, (30), 4429-4438

This study involves the mechanical and structural characterisation of completely degradable scaffolds for tissue engineering applications. The scaffolds are a composite of polylactic acid (PLA) and a soluble calcium phosphate glass, and are thus completely degradable. A factorial experimental design was applied to optimise scaffold composition prior to simultaneous microtomography and micromechanical testing. Synchrotron X-ray microtomography combined with in situ micromechanical testing was performed to obtain three-dimensional 3D images of the scaffolds under compression. The 3D reconstruction was converted into a finite element mesh which was validated by simulating a compression test and comparing it with experimental results. The experimental design reveals that larger glass particle and pore sizes reduce the stiffness of the scaffolds, and that the porosity is largely unaffected by changes in pore sizes or glass weight content. The porosity ranges between 93% and 96.5%, and the stiffness ranges between 50 and 200 kPa. X-ray projections show a homogeneous distribution of the glass particles within the PLA matrix, and illustrate pore-wall breakage under strain. The 3D reconstructions are used qualitatively to visualise the distribution of the phases of the composite material, and to follow pore deformation under compression. Quantitatively, scaffold porosity, pore interconnectivity and surface/volume ratios have been calculated. Finite element analysis revealed the stress and strain distribution in the scaffold under compression, and could be used in the future to characterise the mechanical properties of the scaffolds.

JTD Keywords: Synchrotron x-ray microtomography, Mechanical test, Biodegradable, Glass, Scaffold, Finite element analysis