by Keyword: Lectin

Riera, Roger, Hogervorst, Tim P., Doelman, Ward, Ni, Yan, Pujals, Silvia, Bolli, Evangelia, Codée, Jeroen DC., van Kasteren, Sander I., Albertazzi, Lorenzo, (2021). Single-molecule imaging of glycan–lectin interactions on cells with Glyco-PAINT Nature Chemical Biology 17, 1281-1288

Most lectins bind carbohydrate ligands with relatively low affinity, making the identification of optimal ligands challenging. Here we introduce a point accumulation in nanoscale topography (PAINT) super-resolution microscopy method to capture weak glycan-lectin interactions at the single-molecule level in living cells (Glyco-PAINT). Glyco-PAINT exploits weak and reversible sugar binding to directly achieve single-molecule detection and quantification in cells and is used to establish the relative kon and koff rates of a synthesized library of carbohydrate-based probes, as well as the diffusion coefficient of the receptor-sugar complex. Uptake of ligands correlates with their binding affinity and residence time to establish structure-function relations for various synthetic glycans. We reveal how sugar multivalency and presentation geometry can be optimized for binding and internalization. Overall, Glyco-PAINT represents a powerful approach to study weak glycan-lectin interactions on the surface of living cells, one that can be potentially extended to a variety of lectin-sugar interactions.© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.

JTD Keywords: dc-sign, density, dimerization, endocytosis, lateral mobility, ligand-binding, mannose receptor, proteins, recognition, Animal, Animals, Cell membrane, Cell membrane permeability, Chemistry, Cho cell line, Cho cells, Cricetulus, Cysteine-rich domain, Kinetics, Lectin, Lectins, Ligand, Ligands, Molecular library, Multivariate analysis, Polysaccharide, Polysaccharides, Procedures, Protein binding, Single molecule imaging, Small molecule libraries, Structure activity relation, Structure-activity relationship

Cendra MdM, Torrents E, (2021). Pseudomonas aeruginosa biofilms and their partners in crime Biotechnology Advances 49,

Pseudomonas aeruginosa biofilms and the capacity of the bacterium to coexist and interact with a broad range of microorganisms have a substantial clinical impact. This review focuses on the main traits of P. aeruginosa biofilms, such as the structural composition and regulatory networks involved, placing particular emphasis on the clinical challenges they represent in terms of antimicrobial susceptibility and biofilm infection clearance. Furthermore, the ability of P. aeruginosa to grow together with other microorganisms is a significant pathogenic attribute with clinical relevance; hence, the main microbial interactions of Pseudomonas are especially highlighted and detailed throughout this review. This article also explores the infections caused by single and polymicrobial biofilms of P. aeruginosa and the current models used to recreate them under laboratory conditions. Finally, the antimicrobial and antibiofilm strategies developed against P. aeruginosa mono and multispecies biofilms are detailed at the end of this review.

JTD Keywords: aeruginosa models, antibiotic-resistance, antimicrobials, bacterial biofilms, biofilms, c-di-gmp, chronic infections, enterococcus-faecalis, extracellular dna, in-vitro, lectin pa-iil, p, p. aeruginosa models, polymicrobial, polymicrobial interactions, staphylococcus-aureus, Antimicrobials, Biofilms, Chronic infections, P. aeruginosa models, Polymicrobial, Pseudomonas aeruginosa, Urinary-tract-infection

De Bakker, B. I., De Lange, F., Cambi, A., Korterik, J. P., Van Dijk, E. M. H. P., Van Hulst, N. F., Figdor, C. G., Garcia-Parajo, M. F., (2007). Nanoscale organization of the pathogen receptor DC-SIGN mapped by single-molecule high-resolution fluorescence microscopy ChemPhysChem , 8, (10), 1473-1480

DC-SIGN, a C-type lectin exclusively expressed on dendritic cells (DCs), plays an important role in pathogen recognition by binding with high affinity to a large variety of microorganisms. Recent experimental evidence points to a direct relation between the function of DC-SIGN as a viral receptor and its spatial arrangement on the plasma membrane. We have investigated the nanoscale organization of fluorescently labeled DC-SIGN on intact isolated DCs by means of near-field scanning optical microscopy (NSOM) combined with single-molecule detection. Fluorescence spots of different intensity and size have been directly visualized by optical means with a spatial resolution of less than 100 nm. Intensity- and size-distribution histograms of the DC-SIGN fluorescent spots confirm that approximately 80% of the receptors are organized in nanosized domains randomly distributed on the cell membrane. Intensity-size correlation analysis revealed remarkable heterogeneity in the molecular packing density of the domains. Furthermore, we have mapped the intermolecular organization within a dense cluster by means of sequential NSOM imaging combined with discrete single-molecule photobleaching. In this way we have determined the spatial coordinates of 13 different individual dyes, with a localization accuracy of 6 nm. Our experimental observations are all consistent with an arrangement of DC-SIGN designed to maximize its chances of binding to a wide range of microorganisms. Our data also illustrate the potential of NSOM as an ultrasensitive, high-resolution technique to probe nanometer-scale organization of molecules on the cell membrane.

JTD Keywords: High-resolution optical microscopy, Lectins, Membranes, Receptors, Single-molecule studies