DONATE

Publications

by Keyword: Lung injury

Nong J, Glassman PM, Myerson JW, Zuluaga-Ramirez V, Rodriguez-Garcia A, Mukalel A, Omo-Lamai S, Walsh LR, Zamora ME, Gong X, Wang Z, Bhamidipati K, Kiseleva RY, Villa CH, Greineder CF, Kasner SE, Weissman D, Mitchell MJ, Muro S, Persidsky Y, Brenner JS, Muzykantov VR, Marcos-Contreras OA, (2023). Targeted Nanocarriers Co-Opting Pulmonary Intravascular Leukocytes for Drug Delivery to the Injured Brain Acs Nano 17, 13121-13136

Ex vivo-loaded white blood cells (WBC) can transfer cargo to pathological foci in the central nervous system (CNS). Here we tested affinity ligand driven in vivo loading of WBC in order to bypass the need for ex vivo WBC manipulation. We used a mouse model of acute brain inflammation caused by local injection of tumor necrosis factor alpha (TNF-α). We intravenously injected nanoparticles targeted to intercellular adhesion molecule 1 (anti-ICAM/NP). We found that (A) at 2 h, >20% of anti-ICAM/NP were localized to the lungs; (B) of the anti-ICAM/NP in the lungs >90% were associated with leukocytes; (C) at 6 and 22 h, anti-ICAM/NP pulmonary uptake decreased; (D) anti-ICAM/NP uptake in brain increased up to 5-fold in this time interval, concomitantly with migration of WBCs into the injured brain. Intravital microscopy confirmed transport of anti-ICAM/NP beyond the blood-brain barrier and flow cytometry demonstrated complete association of NP with WBC in the brain (98%). Dexamethasone-loaded anti-ICAM/liposomes abrogated brain edema in this model and promoted anti-inflammatory M2 polarization of macrophages in the brain. In vivo targeted loading of WBC in the intravascular pool may provide advantages of coopting WBC predisposed to natural rapid mobilization from the lungs to the brain, connected directly via conduit vessels.

JTD Keywords: drug delivery, icam-1, inflammation, lung injury, messenger-rna, migration, model, nanoparticles, neutrophils, pharmacokinetics, t-cells, white bloodcells, Adhesion molecules, Brain, Drug delivery, Inflammation, Nanoparticles, Pharmacokinetics, White blood cells


Marhuenda, E, Villarino, A, Narciso, M, Elowsson, L, Almendros, I, Westergren-Thorsson, G, Farre, R, Gavara, N, Otero, J, (2022). Development of a physiomimetic model of acute respiratory distress syndrome by using ECM hydrogels and organ-on-a-chip devices Frontiers In Pharmacology 13, 945134

Acute Respiratory Distress Syndrome is one of the more common fatal complications in COVID-19, characterized by a highly aberrant inflammatory response. Pre-clinical models to study the effect of cell therapy and anti-inflammatory treatments have not comprehensively reproduced the disease due to its high complexity. This work presents a novel physiomimetic in vitro model for Acute Respiratory Distress Syndrome using lung extracellular matrix-derived hydrogels and organ-on-a-chip devices. Monolayres of primary alveolar epithelial cells were cultured on top of decellullarized lung hydrogels containing primary lung mesenchymal stromal cells. Then, cyclic stretch was applied to mimic breathing, and an inflammatory response was induced by using a bacteriotoxin hit. Having simulated the inflamed breathing lung environment, we assessed the effect of an anti-inflammatory drug (i.e., dexamethasone) by studying the secretion of the most relevant inflammatory cytokines. To better identify key players in our model, the impact of the individual factors (cyclic stretch, decellularized lung hydrogel scaffold, and the presence of mesenchymal stromal cells) was studied separately. Results showed that developed model presented a more reduced inflammatory response than traditional models, which is in line with what is expected from the response commonly observed in patients. Further, from the individual analysis of the different stimuli, it was observed that the use of extracellular matrix hydrogels obtained from decellularized lungs had the most significant impact on the change of the inflammatory response. The developed model then opens the door for further in vitro studies with a better-adjusted response to the inflammatory hit and more robust results in the test of different drugs or cell therapy.

JTD Keywords: alveolar epithelial cells, ards, extracellular matrix, hydrogels, inflammation, lung-on-a-chip, Acute lung injury, Alveolar epithelial cells, Ards, Dexamethasone, Epithelial-mesenchymal transition, Extracellular matrix, Extracellular-matrix, Hydrogels, Inflammation, Lung-on-a-chip, Mesenchymal stromal cells, Oxygen, Stem-cells


Farre, R, Rodriguez-Lazaro, MA, Gozal, D, Trias, G, Solana, G, Navajas, D, Otero, J, (2022). Simple low-cost construction and calibration of accurate pneumotachographs for monitoring mechanical ventilation in low-resource settings Frontiers Of Medicine 9, 938949

Assessing tidal volume during mechanical ventilation is critical to improving gas exchange while avoiding ventilator-induced lung injury. Conventional flow and volume measurements are usually carried out by built-in pneumotachographs in the ventilator or by stand-alone flowmeters. Such flow/volume measurement devices are expensive and thus usually unaffordable in low-resource settings. Here, we aimed to design and test low-cost and technically-simple calibration and assembly pneumotachographs. The proposed pneumotachographs are made by manual perforation of a plate with a domestic drill. Their pressure-volume relationship is characterized by a quadratic equation with parameters that can be tailored by the number and diameter of the perforations. We show that the calibration parameters of the pneumotachographs can be measured through two maneuvers with a conventional resuscitation bag and by assessing the maneuver volumes with a cheap and straightforward water displacement setting. We assessed the performance of the simplified low-cost pneumotachographs to measure flow/volume during mechanical ventilation as carried out under typical conditions in low-resource settings, i.e., lacking gold standard expensive devices. Under realistic mechanical ventilation settings (pressure- and volume-control; 200-600 mL), inspiratory tidal volume was accurately measured (errors of 2.1% on average and <4% in the worst case). In conclusion, a simple, low-cost procedure facilitates the construction of affordable and accurate pneumotachographs for monitoring mechanical ventilation in low- and middle-income countries.

JTD Keywords: calibration, flow measurement, low- and middle-income countries, mechanical ventilation, pneumotachograph, Calibration, Flow, Flow measurement, Low- and middle-income countries, Lung injury, Mechanical ventilation, Pneumotachograph, Pressure-drop, Resistance, Tidal volume


Chulia-Peris, L, Carreres-Rey, C, Gabasa, M, Alcaraz, J, Carretero, J, Pereda, J, (2022). Matrix Metalloproteinases and Their Inhibitors in Pulmonary Fibrosis: EMMPRIN/CD147 Comes into Play International Journal Of Molecular Sciences 23, 6894

Pulmonary fibrosis (PF) is characterized by aberrant extracellular matrix (ECM) deposition, activation of fibroblasts to myofibroblasts and parenchymal disorganization, which have an impact on the biomechanical traits of the lung. In this context, the balance between matrix metalloproteinases (MMPs) and their tissue inhibitors of metalloproteinases (TIMPs) is lost. Interestingly, several MMPs are overexpressed during PF and exhibit a clear profibrotic role (MMP-2, -3, -8, -11, -12 and -28), but a few are antifibrotic (MMP-19), have both profibrotic and antifibrotic capacity (MMP7), or execute an unclear (MMP-1, -9, -10, -13, -14) or unknown function. TIMPs are also overexpressed in PF; hence, the modulation and function of MMPs and TIMP are more complex than expected. EMMPRIN/CD147 (also known as basigin) is a transmembrane glycoprotein from the immunoglobulin superfamily (IgSF) that was first described to induce MMP activity in fibroblasts. It also interacts with other molecules to execute non-related MMP aactions well-described in cancer progression, migration, and invasion. Emerging evidence strongly suggests that CD147 plays a key role in PF not only by MMP induction but also by stimulating fibroblast myofibroblast transition. In this review, we study the structure and function of MMPs, TIMPs and CD147 in PF and their complex crosstalk between them.

JTD Keywords: basigin, cd147, emmprin, mmps, timps, Basigin, Cd147, Cell-surface, Emmprin, Extracellular-matrix, Gelatinase-b, Gene-expression profiles, Growth-factor-beta, Immunoglobulin superfamily, Induced lung injury, Inducer emmprin, Mmps, Pulmonary fibrosis, Timps, Tissue inhibitor, Transforming growth-factor-beta-1


Falcones B, Sanz-Fraile H, Marhuenda E, Mendizábal I, Cabrera-Aguilera I, Malandain N, Uriarte JJ, Almendros I, Navajas D, Weiss DJ, Farré R, Otero J, (2021). Bioprintable lung extracellular matrix hydrogel scaffolds for 3d culture of mesenchymal stromal cells Polymers 13,

Mesenchymal stromal cell (MSC)-based cell therapy in acute respiratory diseases is based on MSC secretion of paracrine factors. Several strategies have proposed to improve this are being explored including pre-conditioning the MSCs prior to administration. We here propose a strategy for improving the therapeutic efficacy of MSCs based on cell preconditioning by growing them in native extracellular matrix (ECM) derived from the lung. To this end, a bioink with tunable stiffness based on decellularized porcine lung ECM hydrogels was developed and characterized. The bioink was suitable for 3D culturing of lung-resident MSCs without the need for additional chemical or physical crosslinking. MSCs showed good viability, and contraction assays showed the existence of cell–matrix interactions in the bioprinted scaffolds. Adhesion capacity and length of the focal adhesions formed were increased for the cells cultured within the lung hydrogel scaffolds. Also, there was more than a 20-fold increase of the expression of the CXCR4 receptor in the 3D-cultured cells compared to the cells cultured in plastic. Secretion of cytokines when cultured in an in vitro model of lung injury showed a decreased secretion of pro-inflammatory mediators for the cells cultured in the 3D scaffolds. Moreover, the morphology of the harvested cells was markedly different with respect to conventionally (2D) cultured MSCs. In conclusion, the developed bioink can be used to bioprint structures aimed to improve preconditioning MSCs for therapeutic purposes.

JTD Keywords: 3d bioprinting, acute lung injury, adhesion, collagen, differentiation, dimension, elastic properties, extracellular matrix, hydrogels, in-vitro, mechanical-properties, mesenchymal stromal cells, microenvironment, potentiate, tissue engineering, 3d bioprinting, Acute lung injury, Extracellular matrix, Hydrogels, Mesenchymal stromal cells, Stem-cells, Tissue engineering


Peñuelas, O., Melo, E., Sánchez, C., Sánchez, I., Quinn, K., Ferruelo, A., Pérez-Vizcaíno, F., Esteban, A., Navajas, D., Nin, N., Lorente, J. A., Farré, R., (2013). Antioxidant effect of human adult adipose-derived stromal stem cells in alveolar epithelial cells undergoing stretch Respiratory Physiology & Neurobiology , 188, (1), 1-8

Introduction: Alveolar epithelial cells undergo stretching during mechanical ventilation. Stretch can modify the oxidative balance in the alveolar epithelium. The aim of the present study was to evaluate the antioxidant role of human adult adipose tissue-derived stromal cells (hADSCs) when human alveolar epithelial cells were subjected to injurious cyclic overstretching. Methods: A549 cells were subjected to biaxial stretch (0-15% change in surface area for 24. h, 0.2. Hz) with and without hADSCs. At the end of the experiments, oxidative stress was measured as superoxide generation using positive nuclear dihydroethidium (DHE) staining, superoxide dismutase (SOD) activity in cell lysates, 8-isoprostane concentrations in supernatant, and 3-nitrotyrosine by indirect immunofluorescence in fixed cells. Results: Cyclically stretching of AECs induced a significant decrease in SOD activity, and an increase in 8-isoprostane concentrations, DHE staining and 3-nitrotyrosine staining compared with non-stretched cells. Treatment with hADSCs significantly attenuated stretch-induced changes in SOD activity, 8-isoprostane concentrations, DHE and 3-nitrotyrosine staining. Conclusion: These data suggest that hADSCs have an anti-oxidative effect in human alveolar epithelial cells undergoing cyclic stretch.

JTD Keywords: Acute lung injury, Cyclic stretch, Human adipose-derived stromal stem cells, Oxidative stress


Chimenti, L., Luque, T., Bonsignore, M. R., Ramirez, J., Navajas, D., Farre, R., (2012). Pre-treatment with mesenchymal stem cells reduces ventilator-induced lung injury European Respiratory Journal 40, (4), 939-948

Bone marrow-derived mesenchymal stem cells (MSCs) reduce acute lung injury in animals challenged by bleomycin or bacterial lipopolysaccaride. It is not known, however, whether MSCs protect from ventilator-induced lung injury (VILI). This study investigated whether MSCs have a potential role in preventing or modulating VILI in healthy rats subjected to high-volume ventilation. 24 Sprague-Dawley rats (250-300 g) were subjected to high-volume mechanical ventilation (25 mL.kg(-1)). MSCs (5 x 10(6)) were intravenously or intratracheally administered (n=8 each) 30 min before starting over-ventilation and eight rats were MSC-untreated. Spontaneously breathing anesthetised rats (n=8) served as controls. After 3 h of over-ventilation or control the animals were sacrificed and lung tissue and bronchoalveolar lavage fluid (BALF) were sampled for further analysis. When compared with controls, MSC-untreated over-ventilated rats exhibited typical VILI features. Lung oedema, histological lung injury index, concentrations of total protein, interleukin-1 beta, macrophage inflammatory protein-2 and number of neutrophils in BALF and vascular cell adhesion protein-1 in lung tissue significantly increased in over-ventilated rats. All these indices of VILI moved significantly towards normalisation in the rats treated with MSCs, whether intravenously or intratracheally. Both local and systemic pre-treatment with MSCs reduced VILI in a rat model.

JTD Keywords: Acute lung injury, Cell therapy, Injurious ventilation, Lung inflammation, Lung oedema, Mechanical ventilation


Almendros, I., Gutierrez, P. T., Closa, D., Navajas, D., Farre, R., (2008). One-lung overventilation does not induce inflammation in the normally ventilated contralateral lung Respiratory Physiology & Neurobiology , 162, (1), 100-102

The aim was to assess whether induction of ventilator-induced lung injury (VILI) in one lung triggers a concomitant inflammatory response in the normally ventilated contralateral lung. To this end, a differential ventilator was used in 6 rats. One lung was normally ventilated (3.5 ml/kg b.w.) and the contralateral lung was overstretched (15 ml/kg b.w.). Six control rats were normally ventilated (3.5 ml/kg b.w. each lung). After 3h, edema and gene expression of MIP-2 in the lung, and plasma and liver TNF-alpha were assessed. Overexpression of MIP-2 and edema were found in the overventilated lung but not in the normally ventilated contralateral lung. No detectable levels of circulating and liver TNF-alpha were detected. These data do not support the hypothesis of an early positive feedback in the lung inflammation during the mechanical ventilation.

JTD Keywords: Mechanical ventilation, Lung injury, Lung edema, Lung over stretch, High volume ventilation, Differential ventilation