by Keyword: Mesenchymal stromal cells

Martorell L, López-Fernández A, García-Lizarribar A, Sabata R, Gálvez-Martín P, Samitier J, Vives J, (2023). Preservation of critical quality attributes of mesenchymal stromal cells in 3D bioprinted structures by using natural hydrogel scaffolds Biotechnology And Bioengineering ,

Three dimensional (3D) bioprinting is an emerging technology that enables complex spatial modeling of cell-based tissue engineering products, whose therapeutic potential in regenerative medicine is enormous. However, its success largely depends on the definition of a bioprintable zone, which is specific for each combination of cell-loaded hydrogels (or bioinks) and scaffolds, matching the mechanical and biological characteristics of the target tissue to be repaired. Therefore proper adjustment of the bioink formulation requires a compromise between: (i) the maintenance of cellular critical quality attributes (CQA) within a defined range of specifications to cell component, and (ii) the mechanical characteristics of the printed tissue to biofabricate. Herein, we investigated the advantages of using natural hydrogel-based bioinks to preserve the most relevant CQA in bone tissue regeneration applications, particularly focusing on cell viability and osteogenic potential of multipotent mesenchymal stromal cells (MSCs) displaying tripotency in vitro, and a phenotypic profile of 99.9% CD105(+)/CD45,(-) 10.3% HLA-DR,(+) 100.0% CD90,(+) and 99.2% CD73(+)/CD31(-) expression. Remarkably, hyaluronic acid, fibrin, and gelatin allowed for optimal recovery of viable cells, while preserving MSC's proliferation capacity and osteogenic potency in vitro. This was achieved by providing a 3D structure with a compression module below 8.8 +/- 0.5 kPa, given that higher values resulted in cell loss by mechanical stress. Beyond the biocompatibility of naturally occurring polymers, our results highlight the enhanced protection on CQA exerted by bioinks of natural origin (preferably HA, gelatin, and fibrin) on MSC, bone marrow during the 3D bioprinting process, reducing shear stress and offering structural support for proliferation and osteogenic differentiation.

JTD Keywords: critical quality attributes, human mesenchymal stromal cells, osteogenic differentiation, potency, substances of human origin (soho), 3d bioprinting, Stem-cells

Marhuenda, E, Villarino, A, Narciso, M, Elowsson, L, Almendros, I, Westergren-Thorsson, G, Farre, R, Gavara, N, Otero, J, (2022). Development of a physiomimetic model of acute respiratory distress syndrome by using ECM hydrogels and organ-on-a-chip devices Frontiers In Pharmacology 13, 945134

Acute Respiratory Distress Syndrome is one of the more common fatal complications in COVID-19, characterized by a highly aberrant inflammatory response. Pre-clinical models to study the effect of cell therapy and anti-inflammatory treatments have not comprehensively reproduced the disease due to its high complexity. This work presents a novel physiomimetic in vitro model for Acute Respiratory Distress Syndrome using lung extracellular matrix-derived hydrogels and organ-on-a-chip devices. Monolayres of primary alveolar epithelial cells were cultured on top of decellullarized lung hydrogels containing primary lung mesenchymal stromal cells. Then, cyclic stretch was applied to mimic breathing, and an inflammatory response was induced by using a bacteriotoxin hit. Having simulated the inflamed breathing lung environment, we assessed the effect of an anti-inflammatory drug (i.e., dexamethasone) by studying the secretion of the most relevant inflammatory cytokines. To better identify key players in our model, the impact of the individual factors (cyclic stretch, decellularized lung hydrogel scaffold, and the presence of mesenchymal stromal cells) was studied separately. Results showed that developed model presented a more reduced inflammatory response than traditional models, which is in line with what is expected from the response commonly observed in patients. Further, from the individual analysis of the different stimuli, it was observed that the use of extracellular matrix hydrogels obtained from decellularized lungs had the most significant impact on the change of the inflammatory response. The developed model then opens the door for further in vitro studies with a better-adjusted response to the inflammatory hit and more robust results in the test of different drugs or cell therapy.

JTD Keywords: Acute lung injury, Alveolar epithelial cells, Ards, Dexamethasone, Epithelial-mesenchymal transition, Extracellular matrix, Extracellular-matrix, Hydrogels, Inflammation, Lung-on-a-chip, Mesenchymal stromal cells, Oxygen, Stem-cells

Otero, J, Falcones, B, Sanz, H, Marhuenda, E, Mendizabal, I, Cabrera, I, Almendros, I, Navajas, D, Farre, R, (2022). EXTRACELLULAR MATRIX HYDROGELS FOR 3D BIOPRINTING LUNG RESIDENT MESENCHYMAL STROMAL CELLS (Abstract 1412) Tissue Engineering Part a 28, S396

INTRODUCTION: One of the main hypotheses in mesenchymalstromal cells ( MSCs) research is that the microenvironment deter-mines the way that cells behave. Our aim is to investigate how bio-printing and 3D culturing lung resident MSCs in porcine lung-derived extracellular matrix (ECM) hydrogels produce changes incell behavior. METHODS: Rat primary lung resident MSCs werebioprinted and 3D cultured in porcine lung ECM hydrogels pre-senting a stiffness of 0.7kPa. After seven days of 3D culture, cellswere harvested from the scaffolds. Cell adhesion and actin/paxillinstaining tests were conducted with the harvested and control cells byseeding them onto specific well-plates for optical imaging and al-lowed to attach them to the plate for 2h. The expression of surfacechemokine receptor CXCR4 was quantified by qRT-PCR. RE-SULTS: Compared with cells cultured in standard tissue cultureplates, cells harvested from the lung ECM hydrogel scaffolds formedfocal adhesions 2-fold longer. Moreover, 10-fold more cells wereadhered to the substrate after 2h. Finally, the expression of CXCR4chemokine receptor showed a more than 20-fold increase in thepreconditioned cells. DISCUSSION: The data indicate that culturinglung MSCs in the ECM has major impact in their adhesion capacityand in the expression of one the main receptors involved in severalrelevant processes in vivo. Thus, lung ECM-derived hydrogels havethe potential to be used as a scaffold to develop novel in vitro modelsto better understand mechanisms in MSCs.

JTD Keywords: Bioprinting, Hydrogel, Mesenchymal stromal cells

Brennan M, Monahan DS, Brulin B, Gallinetti S, Humbert P, Tringides C, Canal C, Ginebra MP, Layrolle P, (2021). Biomimetic versus sintered macroporous calcium phosphate scaffolds enhanced bone regeneration and human mesenchymal stromal cell engraftment in calvarial defects Acta Biomaterialia 135, 689-704

In contrast to sintered calcium phosphates (CaPs) commonly employed as scaffolds to deliver mesenchymal stromal cells (MSCs) targeting bone repair, low temperature setting conditions of calcium deficient hydroxyapatite (CDHA) yield biomimetic topology with high specific surface area. In this study, the healing capacity of CDHA administering MSCs to bone defects is evaluated for the first time and compared with sintered beta-tricalcium phosphate (β-TCP) constructs sharing the same interconnected macroporosity. Xeno-free expanded human bone marrow MSCs attached to the surface of the hydrophobic β-TCP constructs, while infiltrating the pores of the hydrophilic CDHA. Implantation of MSCs on CaPs for 8 weeks in calvaria defects of nude mice exhibited complete healing, with bone formation aligned along the periphery of β-TCP, and conversely distributed within the pores of CDHA. Human monocyte-osteoclast differentiation was inhibited in vitro by direct culture on CDHA compared to β-TCP biomaterials and indirectly by administration of MSC-conditioned media generated on CDHA, while MSCs increased osteoclastogenesis in both CaPs in vivo. MSC engraftment was significantly higher in CDHA constructs, and also correlated positively with bone in-growth in scaffolds. These findings demonstrate that biomimetic CDHA are favorable carriers for MSC therapies and should be explored further towards clinical bone regeneration strategies. Statement of significance: Delivery of mesenchymal stromal cells (MSCs) on calcium phosphate (CaP) biomaterials enhances reconstruction of bone defects. Traditional CaPs are produced at high temperature, but calcium deficient hydroxyapatite (CDHA) prepared at room temperature yields a surface structure more similar to native bone mineral. The objective of this study was to compare the capacity of biomimetic CDHA scaffolds with sintered β-TCP scaffolds for bone repair mediated by MSCs for the first time. In vitro, greater cell infiltration occurred in CDHA scaffolds and following 8 weeks in vivo, MSC engraftment was higher in CDHA compared to β-TCP, as was bone in-growth. These findings demonstrate the impact of material features such as surface structure, and highlight that CDHA should be explored towards clinical bone regeneration strategies.

JTD Keywords: beta-tricalcium phosphate, bone regeneration, calcium deficient hydroxyapatite, differentiation, engraftment, human bone marrow mesenchymal stromal cells, hydroxyapatite scaffolds, in-vitro, inhibition, osteogenesis, osteoinduction, stem-cells, surface-topography, tissue, Beta-tricalcium phosphate, Bone regeneration, Calcium deficient hydroxyapatite, Engraftment, Human bone marrow mesenchymal stromal cells

Falcones B, Sanz-Fraile H, Marhuenda E, Mendizábal I, Cabrera-Aguilera I, Malandain N, Uriarte JJ, Almendros I, Navajas D, Weiss DJ, Farré R, Otero J, (2021). Bioprintable lung extracellular matrix hydrogel scaffolds for 3d culture of mesenchymal stromal cells Polymers 13,

Mesenchymal stromal cell (MSC)-based cell therapy in acute respiratory diseases is based on MSC secretion of paracrine factors. Several strategies have proposed to improve this are being explored including pre-conditioning the MSCs prior to administration. We here propose a strategy for improving the therapeutic efficacy of MSCs based on cell preconditioning by growing them in native extracellular matrix (ECM) derived from the lung. To this end, a bioink with tunable stiffness based on decellularized porcine lung ECM hydrogels was developed and characterized. The bioink was suitable for 3D culturing of lung-resident MSCs without the need for additional chemical or physical crosslinking. MSCs showed good viability, and contraction assays showed the existence of cell–matrix interactions in the bioprinted scaffolds. Adhesion capacity and length of the focal adhesions formed were increased for the cells cultured within the lung hydrogel scaffolds. Also, there was more than a 20-fold increase of the expression of the CXCR4 receptor in the 3D-cultured cells compared to the cells cultured in plastic. Secretion of cytokines when cultured in an in vitro model of lung injury showed a decreased secretion of pro-inflammatory mediators for the cells cultured in the 3D scaffolds. Moreover, the morphology of the harvested cells was markedly different with respect to conventionally (2D) cultured MSCs. In conclusion, the developed bioink can be used to bioprint structures aimed to improve preconditioning MSCs for therapeutic purposes.

JTD Keywords: 3d bioprinting, acute lung injury, adhesion, collagen, differentiation, dimension, elastic properties, extracellular matrix, hydrogels, in-vitro, mechanical-properties, mesenchymal stromal cells, microenvironment, potentiate, tissue engineering, 3d bioprinting, Acute lung injury, Extracellular matrix, Hydrogels, Mesenchymal stromal cells, Stem-cells, Tissue engineering

Cereta AD, Oliveira VR, Costa IP, Afonso JPR, Fonseca AL, de Souza ART, Silva GAM, Mello DACPG, Oliveira LVFd, da Palma RK, (2021). Emerging Cell-Based Therapies in Chronic Lung Diseases: What About Asthma? Frontiers In Pharmacology 12,

Asthma is a widespread disease characterized by chronic airway inflammation. It causes substantial disability, impaired quality of life, and avoidable deaths around the world. The main treatment for asthmatic patients is the administration of corticosteroids, which improves the quality of life; however, prolonged use of corticosteroids interferes with extracellular matrix elements. Therefore, cell-based therapies are emerging as a novel therapeutic contribution to tissue regeneration for lung diseases. This study aimed to summarize the advancements in cell therapy involving mesenchymal stromal cells, extracellular vesicles, and immune cells such as T-cells in asthma. Our findings provide evidence that the use of mesenchymal stem cells, their derivatives, and immune cells such as T-cells are an initial milestone to understand how emergent cell-based therapies are effective to face the challenges in the development, progression, and management of asthma, thus improving the quality of life.

JTD Keywords: asthma treatments, cell-based therapies, chronic lung diseases, extracellular vesicles, immune cells, mesenchymal stromal cells, Asthma treatments, Cell-based therapies, Chronic lung diseases, Extracellular vesicles, Immune cells, Mesenchymal stromal cells

Prat-Vidal, C., Rodríguez-Gómez, L., Aylagas, M., Nieto-Nicolau, N., Gastelurrutia, P., Agustí, E., Gálvez-Montón, C., Jorba, I., Teis, A., Monguió-Tortajada, M., Roura, S., Vives, J., Torrents-Zapata, S., Coca, M. I., Reales, L., Cámara-Rosell, M. L., Cediel, G., Coll, R., Farré, R., Navajas, D., Vilarrodona, A., García-López, J., Muñoz-Guijosa, C., Querol, S., Bayes-Genis, A., (2020). First-in-human PeriCord cardiac bioimplant: Scalability and GMP manufacturing of an allogeneic engineered tissue graft EBioMedicine 54, 102729

Background Small cardiac tissue engineering constructs show promise for limiting post-infarct sequelae in animal models. This study sought to scale-up a 2-cm2 preclinical construct into a human-size advanced therapy medicinal product (ATMP; PeriCord), and to test it in a first-in-human implantation. Methods The PeriCord is a clinical-size (12–16 cm2) decellularised pericardial matrix colonised with human viable Wharton's jelly-derived mesenchymal stromal cells (WJ-MSCs). WJ-MSCs expanded following good manufacturing practices (GMP) met safety and quality standards regarding the number of cumulative population doublings, genomic stability, and sterility. Human decellularised pericardial scaffolds were tested for DNA content, matrix stiffness, pore size, and absence of microbiological growth. Findings PeriCord implantation was surgically performed on a large non-revascularisable scar in the inferior wall of a 63-year-old male patient. Coronary artery bypass grafting was concomitantly performed in the non-infarcted area. At implantation, the 16-cm2 pericardial scaffold contained 12·5 × 106 viable WJ-MSCs (85·4% cell viability; <0·51 endotoxin units (EU)/mL). Intraoperative PeriCord delivery was expeditious, and secured with surgical glue. The post-operative course showed non-adverse reaction to the PeriCord, without requiring host immunosuppression. The three-month clinical follow-up was uneventful, and three-month cardiac magnetic resonance imaging showed ~9% reduction in scar mass in the treated area. Interpretation This preliminary report describes the development of a scalable clinical-size allogeneic PeriCord cardiac bioimplant, and its first-in-human implantation. Funding La Marató de TV3 Foundation, Government of Catalonia, Catalan Society of Cardiology, “La Caixa” Banking Foundation, Spanish Ministry of Science, Innovation and Universities, Institute of Health Carlos III, and the European Regional Development Fund.

JTD Keywords: Advanced therapy medicinal product (ATMP), Biofabrication, Cardiac tissue engineering, Myocardial infarction, Scaffold, Wharton's jelly-derived mesenchymal stromal cells (WJ-MSCs)

Vila, M., García, A., Girotti, A., Alonso, M., Rodríguez-Cabello, J. C., González-Vázquez, A., Planell, J. A., Engel, E., Buján, J., Garcíaa-Honduvilla, N., Vallet-Regí, M., (2016). 3D silicon doped hydroxyapatite scaffolds decorated with Elastin-like Recombinamers for bone regenerative medicine Acta Biomaterialia 45, 349-356

The current study reports on the manufacturing by rapid prototyping technique of three-dimensional (3D) scaffolds based on silicon substituted hydroxyapatite with Elastin-like Recombinamers (ELRs) functionalized surfaces. Silicon doped hydroxyapatite (Si-HA), with Ca10(PO4)5.7(SiO4)0.3(OH)1.7h0.3 nominal formula, was surface functionalized with two different types of polymers designed by genetic engineering: ELR-RGD that contain cell attachment specific sequences and ELR-SNA15/RGD with both hydroxyapatite and cells domains that interact with the inorganic phase and with the cells, respectively. These hybrid materials were subjected to in vitro assays in order to clarify if the ELRs coating improved the well-known biocompatible and bone regeneration properties of calcium phosphates materials. The in vitro tests showed that there was a total and homogeneous colonization of the 3D scaffolds by Bone marrow Mesenchymal Stromal Cells (BMSCs). In addition, the BMSCs were viable and able to proliferate and differentiate into osteoblasts. Statement of Significance Bone tissue engineering is an area of increasing interest because its main applications are directly related to the rising life expectancy of the population, which promotes higher rates of several bone pathologies, so innovative strategies are needed for bone tissue regeneration therapies. Here we use the rapid prototyping technology to allow moulding ceramic 3D scaffolds and we use different bio-polymers for the functionalization of their surfaces in order to enhance the biological response. Combining the ceramic material (silicon doped hydroxyapatite, Si-HA) and the Elastin like Recombinamers (ELRs) polymers with the presence of the integrin-mediate adhesion domain alone or in combination with SNA15 peptide that possess high affinity for hydroxyapatite, provided an improved Bone marrow Mesenchymal Stromal Cells (BMSCs) differentiation into osteoblastic linkage.

JTD Keywords: Bone marrow Mesenchymal Stromal Cells (BMSCs), Bone repair, Elastin-like Recombinamers (ELRs), Rapid prototyped 3D scaffolds, Silicon doped hydroxyapatite (Si-HA), Tissue engineering

Levato, R., Planell, J. A., Mateos-Timoneda, M. A., Engel, E., (2015). Role of ECM/peptide coatings on SDF-1α triggered mesenchymal stromal cell migration from microcarriers for cell therapy Acta Biomaterialia 18, 59-67

Many cell therapies rely on the ability of mesenchymal stromal cells (MSCs) to diffuse and localize throughout the target tissue-such as tumoral and ischemic tissues-, in response to specific cytokine signals, rather than being concentrated at the site of implantation. Therefore, it is fundamental to engineer biomaterial carriers as reservoirs, from which cells can migrate, possibly in a controlled manner. In this work, microcarriers (μCs) made of polylactic acid are characterized as MSC delivery vehicles capable of modulating key chemotactic pathways. The effect of different functionalization strategies on MSC migratory behavior from the μCs is studied in vitro in relation to SDF-1α/CXCR4 axis,-a major actor in MSC recruitment, chemotaxis and homing. Collagen and arginine-glycine-aspartic acid (RGD) peptides were either covalently grafted or physisorbed on μC surface. While stable covalent modifications promoted better cell adhesion and higher proliferation compared to physisorption, the functionalization method of the μCs also affected the cells migratory behavior in response to SDF-1α (CXCL12) stimulation. Less stable coatings (physisorbed) showed sensibly higher number of migrating cells than covalent collagen/RGD coatings. The combination of physic-chemical cues provided by protein/peptide functionalization and stimuli induced by 3D culture on μCs improved MSC expression of CXCR4, and exerted a control over cell migration, a condition suitable to promote cell homing after transplantation in vivo. These are key findings to highlight the impact of surface modification approaches on chemokine-triggered cell release, and allow designing biomaterials for efficient and controlled cell delivery to damaged tissues.

JTD Keywords: Cell therapy, Chemotaxis, ECM (extracellular matrix), Mesenchymal stromal cells, Surface modification

González-Vázquez, A., Planell, J. A., Engel, E., (2014). Extracellular calcium and CaSR drive osteoinduction in mesenchymal stromal cells Acta Biomaterialia 10, (6), 2824–2833

Bone is the main store of calcium and progenitor cells in the body. During the resorption process, the local calcium concentration reaches 8-40 mM, and the surrounding cells are exposed to these fluctuations in calcium. This stimulus is a signal that is detected through the calcium sensing receptor (CaSR), which modulates chemotactic and proliferative G protein-dependent signaling pathways. The objective of the present work is to evaluate the roles of extracellular calcium ([Ca2+]o) and the CaSR in osteoinduction. Rat bone marrow mesenchymal stromal cells (rBMSCs) were stimulated with 10 mM of Ca2+. Several experiments were conducted to demonstrate the effect of [Ca2+]o on chemotaxis, proliferation and differentiation on the osteoblastic lineage. It was found that [Ca2+]o induces rBMSCs to migrate and proliferate in a concentration-dependent manner. Real-time polymerase chain reaction and immunofluorescence also revealed that 10 mM Ca2+ stimulates overexpression of osteogenic markers in rBMSCs, including alkaline phosphatase (ALP), bone sialoprotein, collagen Ia1 and osteocalcin. Functional assays determining ALP activity and mineralization tests both corroborate the increased expression of these markers in rBMSCs stimulated with Ca2+. Moreover, CaSR blockage inhibited the cellular response to stimulation with high concentrations of [Ca2+]o, revealing that the CaSR is a key modulator of these cellular responses.

JTD Keywords: Calcium sensing receptor (CaSR), Extracellular calcium, Mesenchymal stromal cells (MSCs), Osteoinduction, Regenerative medicine

Vila, Olaia F., Bagó, Juli R., Navarro, Melba, Alieva, Maria, Aguilar, Elisabeth, Engel, Elisabeth, Planell, Josep, Rubio, Nuria, Blanco, Jerónimo, (2013). Calcium phosphate glass improves angiogenesis capacity of poly(lactic acid) scaffolds and stimulates differentiation of adipose tissue-derived mesenchymal stromal cells to the endothelial lineage Journal of Biomedical Materials Research - Part A , 101A, (4), 932-941

The angiogenic capacity of a new biomaterial composite of poly(lactic acid) and calcium phosphate glass (PLA/CaP) was analyzed by noninvasive bioluminescence imaging (BLI) and histological procedures. Human adipose tissue-derived mesenchymal stromal cells expressing cytomegalovirus (CMV) promoter regulated Photinus pyralis luciferase (hAMSC-PLuc) grew up to 30 times the initial cell load, in vitro, when seeded in PLA/CaP scaffolds, but suffered an initial growth crisis followed by recovery when the scaffolds were subcutaneously implanted in SCID mice. To analyze changes in gene expression, hAMSC-PLuc cells were double labeled with a CMV promoter regulated Renilla reniformis luciferase and a Photinus pyralis luciferase reporter regulated by either the PECAM promoter or a hypoxia response element (HRE) artificial promoter and seeded in PLA/CaP and PLA scaffolds implanted in SCID mice. Analysis by BLI showed that hAMSCs in scaffolds were induced to differentiate to the endothelial lineage and did this faster in PLA/CaP than in PLA scaffolds. Endothelial differentiation correlated with a decrease in the activity of HRE regulated luciferase expression, indicative of a reduction of hypoxia. Histological analysis showed that PLA/CaP scaffolds were colonized by a functional host vascular system. Moreover, colonization by isolectin B4 positive host cells was more effective in PLA/CaP than in PLA scaffolds, corroborating BLI results.

JTD Keywords: Scaffold, Bioluminescence imaging, Cell differentiation, Angiogenesis, Mesenchymal stromal cells