by Keyword: Microtubule-associated protein
Hernández, F, Ferrer, I, Pérez, M, Zabala, JC, del Rio, JA, Avila, J, (2023). Tau Aggregation Neuroscience 518, 64-69
Here we revisit tau protein aggregation at primary, secondary, tertiary and quaternary structures. In addition, the presence of non-aggregated tau protein, which has been recently discovered, is also commented on.Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved.
JTD Keywords: alpha-helix, alzheimer-disease, antigenic determinants, binding, isomerase pin1, microtubule-binding repeats, neurofibrillary tangles, paired helical filaments, repeat domain, structural-characterization, tau conformations, w-tau isoform, Microtubule-associated protein, Microtubule-binding repeats, Tau, Tau conformations, W-tau isoform
Sala-Jarque, J, Zimkowska, K, Avila, J, Ferrer, I, del Rio, JA, (2022). Towards a Mechanistic Model of Tau-Mediated Pathology in Tauopathies: What Can We Learn from Cell-Based In Vitro Assays? International Journal Of Molecular Sciences 23, 11527
Tauopathies are a group of neurodegenerative diseases characterized by the hyperphosphorylation and deposition of tau proteins in the brain. In Alzheimer's disease, and other related tauopathies, the pattern of tau deposition follows a stereotypical progression between anatomically connected brain regions. Increasing evidence suggests that tau behaves in a "prion-like" manner, and that seeding and spreading of pathological tau drive progressive neurodegeneration. Although several advances have been made in recent years, the exact cellular and molecular mechanisms involved remain largely unknown. Since there are no effective therapies for any tauopathy, there is a growing need for reliable experimental models that would provide us with better knowledge and understanding of their etiology and identify novel molecular targets. In this review, we will summarize the development of cellular models for modeling tau pathology. We will discuss their different applications and contributions to our current understanding of the "prion-like" nature of pathological tau.
JTD Keywords: neurodegeneration, seeding, spreading, Culture model, Efficient generation, Extracellular tau, Familial alzheimers-disease, Microtubule-associated protein, Mouse model, Neurodegeneration, Neurofibrillary tangles, Paired helical filaments, Pathogenic tau, Pluripotent stem-cells, Seeding, Spreading, Tauopathies
Lidón, L, Llaó-Hierro, L, Nuvolone, M, Aguzzi, A, Avila, J, Ferrer, I, del Río, JA, Gavín, R, (2021). Tau exon 10 inclusion by prpc through downregulating gsk3? activity International Journal Of Molecular Sciences 22, 5370
Tau protein is largely responsible for tauopathies, including Alzheimer’s disease (AD), where it accumulates in the brain as insoluble aggregates. Tau mRNA is regulated by alternative splicing, and inclusion or exclusion of exon 10 gives rise to the 3R and 4R isoforms respectively, whose balance is physiologically regulated. In this sense, one of the several factors that regulate alternative splicing of tau is GSK3?, whose activity is inhibited by the cellular prion protein (PrPC), which has different physiological functions in neuroprotection and neuronal differentiation. Moreover, a relationship between PrPC and tau expression levels has been reported during AD evolution. For this reason, in this study we aimed to analyze the role of PrPC and the implication of GSK3? in the regulation of tau exon 10 alternative splicing. We used AD human samples and mouse models of PrPC ablation and tau overexpression. In addition, we used primary neuronal cultures to develop functional studies. Our results revealed a paralleled association between PrPC expression and tau 4R isoforms in all models analyzed. In this sense, reduction or ablation of PrPC levels induces an increase in tau 3R/4R balance. More relevantly, our data points to GSK3? activity downstream from PrPC in this phenomenon. Our results indicate that PrPC plays a role in tau exon 10 inclusion through the inhibitory capacity of GSK3?. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
JTD Keywords: alternative splicing, alzheimer's disease, alzheimers-disease, alzheimer’s disease, amyloid-beta, cellular prion protein, frontotemporal dementia, glycogen-synthase kinase-3, gsk3 beta, gsk3?, gsk3β, messenger-rna, microtubule-associated protein tau, neurofibrillary tangles, progressive supranuclear palsy, promotes neuronal differentiation, stem-cells, tauopathies, Alternative splicing, Alzheimer’s disease, Cellular prion protein, Gsk3?, Microtubule-associated protein tau, Tauopathies
Vergara, C., Ordóñez-Gutiérrez, L., Wandosell, F., Ferrer, Isidro, del Río, J. A., Gavín, R., (2015). Role of PrPC expression in tau protein levels and phosphorylation in alzheimer's disease evolution Molecular Neurobiology 51, (3), 1206-1220
Alzheimer's disease (AD) is characterized by the presence of amyloid plaques mainly consisting of hydrophobic β-amyloid peptide (Aβ) aggregates and neurofibrillary tangles (NFTs) composed principally of hyperphosphorylated tau. Aβ oligomers have been described as the earliest effectors to negatively affect synaptic structure and plasticity in the affected brains, and cellular prion protein (PrPC) has been proposed as receptor for these oligomers. The most widely accepted theory holds that the toxic effects of Aβ are upstream of change in tau, a neuronal microtubule-associated protein that promotes the polymerization and stabilization of microtubules. However, tau is considered decisive for the progression of neurodegeneration, and, indeed, tau pathology correlates well with clinical symptoms such as dementia. Different pathways can lead to abnormal phosphorylation, and, as a consequence, tau aggregates into paired helical filaments (PHF) and later on into NFTs. Reported data suggest a regulatory tendency of PrPC expression in the development of AD, and a putative relationship between PrPC and tau processing is emerging. However, the role of tau/PrPC interaction in AD is poorly understood. In this study, we show increased susceptibility to Aβ-derived diffusible ligands (ADDLs) in neuronal primary cultures from PrPC knockout mice, compared to wild-type, which correlates with increased tau expression. Moreover, we found increased PrPC expression that paralleled with tau at early ages in an AD murine model and in early Braak stages of AD in affected individuals. Taken together, these results suggest a protective role for PrPC in AD by downregulating tau expression, and they point to this protein as being crucial in the molecular events that lead to neurodegeneration in AD.
JTD Keywords: Aβ oligomers, Alzheimer's disease, Cellular prion protein, Microtubule-associated protein tau