DONATE

Publications

by Keyword: Neural networks

Santos-Pata D, Amil AF, Raikov IG, Rennó-Costa C, Mura A, Soltesz I, Verschure PFMJ, (2021). Epistemic Autonomy: Self-supervised Learning in the Mammalian Hippocampus Trends In Cognitive Sciences 25, 582-595

Biological cognition is based on the ability to autonomously acquire knowledge, or epistemic autonomy. Such self-supervision is largely absent in artificial neural networks (ANN) because they depend on externally set learning criteria. Yet training ANN using error backpropagation has created the current revolution in artificial intelligence, raising the question of whether the epistemic autonomy displayed in biological cognition can be achieved with error backpropagation-based learning. We present evidence suggesting that the entorhinal–hippocampal complex combines epistemic autonomy with error backpropagation. Specifically, we propose that the hippocampus minimizes the error between its input and output signals through a modulatory counter-current inhibitory network. We further discuss the computational emulation of this principle and analyze it in the context of autonomous cognitive systems. © 2021 Elsevier Ltd

JTD Keywords: computational model, dentate gyrus, error backpropagation, granule cells, grid cells, hippocampus, inhibition, input, neural-networks, neurons, transformation, Artificial intelligence, Artificial neural network, Back propagation, Backpropagation, Brain, Cognitive systems, Counter current, Error back-propagation, Error backpropagation, Errors, Expressing interneurons, Hippocampal complex, Hippocampus, Human experiment, Input and outputs, Learning, Mammal, Mammalian hippocampus, Mammals, Neural networks, Nonhuman, Review, Self-supervised learning


Checa M, Millan-Solsona R, Mares AG, Pujals S, Gomila G, (2021). Fast Label-Free Nanoscale Composition Mapping of Eukaryotic Cells Via Scanning Dielectric Force Volume Microscopy and Machine Learning Small Methods 5,

Mapping the biochemical composition of eukaryotic cells without the use of exogenous labels is a long-sought objective in cell biology. Recently, it has been shown that composition maps on dry single bacterial cells with nanoscale spatial resolution can be inferred from quantitative nanoscale dielectric constant maps obtained with the scanning dielectric microscope. Here, it is shown that this approach can also be applied to the much more challenging case of fixed and dry eukaryotic cells, which are highly heterogeneous and show micrometric topographic variations. More importantly, it is demonstrated that the main bottleneck of the technique (the long computation times required to extract the nanoscale dielectric constant maps) can be shortcut by using supervised neural networks, decreasing them from weeks to seconds in a wokstation computer. This easy-to-use data-driven approach opens the door for in situ and on-the-fly label free nanoscale composition mapping of eukaryotic cells with scanning dielectric microscopy. © 2021 The Authors. Small Methods published by Wiley-VCH GmbH

JTD Keywords: label-free mapping, machine learning, nanoscale, scanning dielectric microscopy, Biochemical composition, Cells, Constant, Cytology, Data-driven approach, Dielectric forces, Dielectric materials, Eukaryotic cells, Label-free mapping, Machine learning, Mapping, Nanoscale, Nanoscale composition, Nanoscale spatial resolution, Nanotechnology, Scanning, Scanning dielectric microscopy, Supervised neural networks


Santos-Pata D, Amil AF, Raikov IG, Rennó-Costa C, Mura A, Soltesz I, Verschure PFMJ, (2021). Entorhinal mismatch: A model of self-supervised learning in the hippocampus Iscience 24,

The hippocampal formation displays a wide range of physiological responses to different spatial manipulations of the environment. However, very few attempts have been made to identify core computational principles underlying those hippocampal responses. Here, we capitalize on the observation that the entorhinal-hippocampal complex (EHC) forms a closed loop and projects inhibitory signals “countercurrent” to the trisynaptic pathway to build a self-supervised model that learns to reconstruct its own inputs by error backpropagation. The EHC is then abstracted as an autoencoder, with the hidden layers acting as an information bottleneck. With the inputs mimicking the firing activity of lateral and medial entorhinal cells, our model is shown to generate place cells and to respond to environmental manipulations as observed in rodent experiments. Altogether, we propose that the hippocampus builds conjunctive compressed representations of the environment by learning to reconstruct its own entorhinal inputs via gradient descent.

JTD Keywords: cognitive neuroscience, grid cells, long-term, networks, neural networks, novelty, oscillations, pattern separation, region, representation, working-memory, Cognitive neuroscience, Neural networks, Rat dentate gyrus, Systems neuroscience


Marban, A., Srinivasan, V., Samek, W., Fernández, J., Casals, A., (2019). A recurrent convolutional neural network approach for sensorless force estimation in robotic surgery Biomedical Signal Processing and Control 50, 134-150

Providing force feedback as relevant information in current Robot-Assisted Minimally Invasive Surgery systems constitutes a technological challenge due to the constraints imposed by the surgical environment. In this context, force estimation techniques represent a potential solution, enabling to sense the interaction forces between the surgical instruments and soft-tissues. Specifically, if visual feedback is available for observing soft-tissues’ deformation, this feedback can be used to estimate the forces applied to these tissues. To this end, a force estimation model, based on Convolutional Neural Networks and Long-Short Term Memory networks, is proposed in this work. This model is designed to process both, the spatiotemporal information present in video sequences and the temporal structure of tool data (the surgical tool-tip trajectory and its grasping status). A series of analyses are carried out to reveal the advantages of the proposal and the challenges that remain for real applications. This research work focuses on two surgical task scenarios, referred to as pushing and pulling tissue. For these two scenarios, different input data modalities and their effect on the force estimation quality are investigated. These input data modalities are tool data, video sequences and a combination of both. The results suggest that the force estimation quality is better when both, the tool data and video sequences, are processed by the neural network model. Moreover, this study reveals the need for a loss function, designed to promote the modeling of smooth and sharp details found in force signals. Finally, the results show that the modeling of forces due to pulling tasks is more challenging than for the simplest pushing actions.

JTD Keywords: Convolutional neural networks, Force estimation, LSTM networks, Robotic surgery


Martinez-Hernandez, Uriel, Vouloutsi, Vasiliki, Mura, Anna, Mangan, Michael, Asada, Minoru, Prescott, T. J., Verschure, P., (2019). Biomimetic and Biohybrid Systems 8th International Conference, Living Machines 2019, Nara, Japan, July 9–12, 2019, Proceedings , Springer, Cham (Lausanne, Switzerland) 11556, 1-384

This book constitutes the proceedings of the 8th International Conference on Biomimetic and Biohybrid Systems, Living Machines 2019, held in Nara, Japan, in July 2019. The 26 full and 16 short papers presented in this volume were carefully reviewed and selected from 45 submissions. They deal with research on novel life-like technologies inspired by the scientific investigation of biological systems, biomimetics, and research that seeks to interface biological and artificial systems to create biohybrid systems.

JTD Keywords: Artificial intelligence, Biomimetics, Computer architecture, Human robot interaction, Human-Computer Interaction (HCI), Humanoid robot, Image processing, Learning algorithms, Mobile robots, Multipurpose robots, Neural networks, Quadruped robots, Reinforcement learning, Robot learning, Robotics, Robots, Sensor, Sensors, Swarm robotics, User interfaces


Puigbò, J. Y., Arsiwalla, X. D., Verschure, P., (2018). Challenges of machine learning for living machines Biomimetic and Biohybrid Systems 7th International Conference, Living Machines 2018 (Lecture Notes in Computer Science) , Springer International Publishing (Paris, France) 10928, 382-386

Machine Learning algorithms (and in particular Reinforcement Learning (RL)) have proved very successful in recent years. These have managed to achieve super-human performance in many different tasks, from video-games to board-games and complex cognitive tasks such as path-planning or Theory of Mind (ToM) on artificial agents. Nonetheless, this super-human performance is also super-artificial. Despite some metrics are better than what a human can achieve (i.e. cumulative reward), in less common metrics (i.e. time to learning asymptote) the performance is significantly worse. Moreover, the means by which those are achieved fail to extend our understanding of the human or mammal brain. Moreover, most approaches used are based on black-box optimization, making any comparison beyond performance (e.g. at the architectural level) difficult. In this position paper, we review the origins of reinforcement learning and propose its extension with models of learning derived from fear and avoidance behaviors. We argue that avoidance-based mechanisms are required when training on embodied, situated systems to ensure fast and safe convergence and potentially overcome some of the current limitations of the RL paradigm.

JTD Keywords: Avoidance, Neural networks, Reinforcement learning


Vouloutsi, Vasiliki, Halloy, José, Mura, Anna, Mangan, Michael, Lepora, Nathan, Prescott, T. J., Verschure, P., (2018). Biomimetic and Biohybrid Systems 7th International Conference, Living Machines 2018, Paris, France, July 17–20, 2018, Proceedings , Springer International Publishing (Lausanne, Switzerland) 10928, 1-551

This book constitutes the proceedings of the 7th International Conference on Biomimetic and Biohybrid Systems, Living Machines 2018, held in Paris, France, in July 2018. The 40 full and 18 short papers presented in this volume were carefully reviewed and selected from 60 submissions. The theme of the conference targeted at the intersection of research on novel life-like technologies inspired by the scientific investigation of biological systems, biomimetics, and research that seeks to interface biological and artificial systems to create biohybrid systems.

JTD Keywords: Artificial neural network, Bio-actuators, Bio-robotics, Biohybrid systems, Biomimetics, Bipedal robots, Earthoworm-like robots, Robotics, Decision-making, Tactile sensing, Soft robots, Locomotion, Insects, Sensors, Actuators, Robots, Artificial intelligence, Neural networks, Motion planning, Learning algorithms


Gonzalez, H., Acevedo, H., Arizmendi, C., Giraldo, B. F., (2013). Methodology for determine the moment of disconnection of patients of the mechanical ventilation using discrete wavelet transform Complex Medical Engineering (CME) 2013 ICME International Conference , IEEE (Beijing, China) , 483-486

The process of weaning from mechanical ventilation is one of the challenges in intensive care units. 66 patients under extubation process (T-tube test) were studied: 33 patients with successful trials and 33 patients who failed to maintain spontaneous breathing and were reconnected. Each patient was characterized using 7 time series from respiratory signals, and for each serie was evaluated the discrete wavelet transform. It trains a neural network for discriminating between patients from the two groups.

JTD Keywords: discrete wavelet transforms, neural nets, patient treatment, pneumodynamics, time series, ventilation, T-tube test, discrete wavelet transform, extubation process, intensive care units, mechanical ventilation, moment of disconnection, neural network, patients, respiratory signals, spontaneous breathing, time series, weaning, Mechanical Ventilation, Neural Networks, Time series from respiratory signals, Wavelet Transform