by Keyword: Origi
Villasante, A, Corominas, J, Alcon, C, Garcia-Lizarribar, A, Mora, J, Lopez-Fanarraga, M, Samitier, J, (2024). Identification of GB3 as a Novel Biomarker of Tumor-Derived Vasculature in Neuroblastoma Using a Stiffness-Based Model Cancers 16, 1060
Simple Summary Neuroblastoma (NB), a prevalent childhood cancer, presents challenges in treatment due to its cellular diversity and the presence of tumor-derived endothelial cells (TECs) associated with chemoresistance. We lack specific biomarkers for TECs, hindering effective therapies. We developed a stiffness-based in vitro platform simulating arterial and venous conditions to address this gap. Notably, adrenergic NB cells transdifferentiated into TECs where there was an arterial-like stiffness, while mesenchymal cells did not. This platform facilitated the identification of Globotriaosylceramide (GB3) as a novel TEC biomarker. Moreover, we harnessed Shiga toxin-functionalized nanoparticles for the specific targeting of GB3-positive cells, showing promise for future therapeutic strategies. Our study provides insights into NB heterogeneity, offers a predictive tool for assessing aggressiveness, and introduces potential targets for precision therapies.Abstract Neuroblastoma (NB) is a childhood cancer in sympathetic nervous system cells. NB exhibits cellular heterogeneity, with adrenergic and mesenchymal states displaying distinct tumorigenic potentials. NB is highly vascularized, and blood vessels can form through various mechanisms, including endothelial transdifferentiation, leading to the development of tumor-derived endothelial cells (TECs) associated with chemoresistance. We lack specific biomarkers for TECs. Therefore, identifying new TEC biomarkers is vital for effective NB therapies. A stiffness-based platform simulating human arterial and venous stiffness was developed to study NB TECs in vitro. Adrenergic cells cultured on arterial-like stiffness transdifferentiated into TECs, while mesenchymal state cells did not. The TECs derived from adrenergic cells served as a model to explore new biomarkers, with a particular focus on GB3, a glycosphingolipid receptor implicated in angiogenesis, metastasis, and drug resistance. Notably, the TECs unequivocally expressed GB3, validating its novelty as a marker. To explore targeted therapeutic interventions, nanoparticles functionalized with the non-toxic subunit B of the Shiga toxin were generated, because they demonstrated a robust affinity for GB3-positive cells. Our results demonstrate the value of the stiffness-based platform as a predictive tool for assessing NB aggressiveness, the discovery of new biomarkers, and the evaluation of the effectiveness of targeted therapeutic strategies.
JTD Keywords: Alternative vasculature, Angiogenesis, Cells, Differentiation, Gb3, Neuroblastoma, Origin, Tumor-derived endothelial cells
Villasante, Aranzazu, Lopez-Martinez, Maria Jose, Quinonero, Gema, Garcia-Lizarribar, Andrea, Peng, Xiaofeng, Samitier, Josep, (2024). Microfluidic model of the alternative vasculature in neuroblastoma In Vitro Models 3, 49-63
Neuroblastoma (NB) is a highly vascularized pediatric tumor arising from undifferentiated neural crest cells early in life, exhibiting both traditional endothelial-cell-driven vasculature and an intriguing alternative vasculature. The alternative vasculature can arise from cancer cells undergoing transdifferentiation into tumor-derived endothelial cells (TEC), a trait associated with drug resistance and tumor relapse. The lack of effective treatments targeting NB vasculature primarily arises from the challenge of establishing predictive in vitro models that faithfully replicate the alternative vasculature phenomenon. In this study, we aim to recreate the intricate vascular system of NB in an in vitro context, encompassing both types of vascularization, by developing a novel neuroblastoma-on-a-chip model. We designed a collagen I/fibrin-based hydrogel closely mirroring NB's physiological composition and tumor stiffness. This biomaterial created a supportive environment for the viability of NB and endothelial cells. Implementing a physiological shear stress value, aligned with the observed range in arteries and capillaries, within the microfluidic chip facilitated the successful development of vessel-like structures and triggered transdifferentiation of NB cells into TECs. The vascularized neuroblastoma-on-a-chip model introduced here presents a promising and complementary strategy to animal-based research with a significant capacity for delving into NB tumor biology and vascular targeting therapy.
JTD Keywords: 3d tumor model, Angiogenesis, Endothelial-cells, Microfluidic device, Neuroblastoma, Origi, Transdifferentiation, Tumor, Tumor-derived endothelial cells, Tumor-on-a-chip, Vasculature
Martorell, L, López-Fernández, A, García-Lizarribar, A, Sabata, R, Gálvez-Martín, P, Samitier, J, Vives, J, (2023). Preservation of critical quality attributes of mesenchymal stromal cells in 3D bioprinted structures by using natural hydrogel scaffolds Biotechnology And Bioengineering 120, 2717-2724
Three dimensional (3D) bioprinting is an emerging technology that enables complex spatial modeling of cell-based tissue engineering products, whose therapeutic potential in regenerative medicine is enormous. However, its success largely depends on the definition of a bioprintable zone, which is specific for each combination of cell-loaded hydrogels (or bioinks) and scaffolds, matching the mechanical and biological characteristics of the target tissue to be repaired. Therefore proper adjustment of the bioink formulation requires a compromise between: (i) the maintenance of cellular critical quality attributes (CQA) within a defined range of specifications to cell component, and (ii) the mechanical characteristics of the printed tissue to biofabricate. Herein, we investigated the advantages of using natural hydrogel-based bioinks to preserve the most relevant CQA in bone tissue regeneration applications, particularly focusing on cell viability and osteogenic potential of multipotent mesenchymal stromal cells (MSCs) displaying tripotency in vitro, and a phenotypic profile of 99.9% CD105(+)/CD45,(-) 10.3% HLA-DR,(+) 100.0% CD90,(+) and 99.2% CD73(+)/CD31(-) expression. Remarkably, hyaluronic acid, fibrin, and gelatin allowed for optimal recovery of viable cells, while preserving MSC's proliferation capacity and osteogenic potency in vitro. This was achieved by providing a 3D structure with a compression module below 8.8 +/- 0.5 kPa, given that higher values resulted in cell loss by mechanical stress. Beyond the biocompatibility of naturally occurring polymers, our results highlight the enhanced protection on CQA exerted by bioinks of natural origin (preferably HA, gelatin, and fibrin) on MSC, bone marrow during the 3D bioprinting process, reducing shear stress and offering structural support for proliferation and osteogenic differentiation.
JTD Keywords: critical quality attributes, human mesenchymal stromal cells, osteogenic differentiation, potency, substances of human origin (soho), 3d bioprinting, Critical quality attributes, Human mesenchymal stromal cells, Osteogenic differentiation, Potency, Stem-cells, Substances of human origin (soho)
Fernàndez-Busquets, X., Körnig, A., Bucior, I., Burger, M. M., Anselmetti, D., (2009). Self-recognition and Ca2+-dependent carbohydrate-carbohydrate cell adhesion provide clues to the cambrian explosion Molecular Biology and Evolution , 26, (11), 2551-2561
The Cambrian explosion of life was a relatively short period approximately 540 Ma that marked a generalized acceleration in the evolution of most animal phyla, but the trigger of this key biological event remains elusive. Sponges are the oldest extant Precambrian metazoan phylum and thus a valid model to study factors that could have unleashed the rise of multicellular animals. One such factor is the advent of self-/non-self-recognition systems, which would be evolutionarily beneficial to organisms to prevent germ-cell parasitism or the introduction of deleterious mutations resulting from fusion with genetically different individuals. However, the molecules responsible for allorecognition probably evolved gradually before the Cambrian period, and some other (external) factor remains to be identified as the missing triggering event. Sponge cells associate through calcium-dependent, multivalent carbohydrate-carbohydrate interactions of the g200 glycan found on extracellular proteoglycans. Single molecule force spectroscopy analysis of g200-g200 binding indicates that calcium affects the lifetime (+Ca/-Ca: 680 s/3 s) and bond reaction length (+Ca/-Ca: 3.47 /2.27). Calculation of mean g200 dissociation times in low and high calcium within the theoretical framework of a cooperative binding model indicates the nonlinear and divergent characteristics leading to either disaggregated cells or stable multicellular assemblies, respectively. This fundamental phenomenon can explain a switch from weak to strong adhesion between primitive metazoan cells caused by the well-documented rise in ocean calcium levels at the end of Precambrian time. We propose that stronger cell adhesion allowed the integrity of genetically uniform animals composed only of "self" cells, facilitating genetic constitutions to remain within the metazoan individual and be passed down inheritance lines. The Cambrian explosion might have been triggered by the coincidence in time of primitive animals endowed with self-/non-self-recognition and of a surge in seawater calcium that increased the binding forces between their calcium-dependent cell adhesion molecules.
JTD Keywords: Calcium, Cambrian explosion, Carbohydrates, Cell adhesion, Origin of Metazoa, Sponges