DONATE

Publications

by Keyword: Photothermal therapy

Gallo, J, Villasante, A, (2023). Recent Advances in Biomimetic Nanocarrier-Based Photothermal Therapy for Cancer Treatment International Journal Of Molecular Sciences 24, 15484

Nanomedicine presents innovative solutions for cancer treatment, including photothermal therapy (PTT). PTT centers on the design of photoactivatable nanoparticles capable of absorbing non-toxic near-infrared light, generating heat within target cells to induce cell death. The successful transition from benchside to bedside application of PTT critically depends on the core properties of nanoparticles responsible for converting light into heat and the surface properties for precise cell-specific targeting. Precisely targeting the intended cells remains a primary challenge in PTT. In recent years, a groundbreaking approach has emerged to address this challenge by functionalizing nanocarriers and enhancing cell targeting. This strategy involves the creation of biomimetic nanoparticles that combine desired biocompatibility properties with the immune evasion mechanisms of natural materials. This review comprehensively outlines various strategies for designing biomimetic photoactivatable nanocarriers for PTT, with a primary focus on its application in cancer therapy. Additionally, we shed light on the hurdles involved in translating PTT from research to clinical practice, along with an overview of current clinical applications.

JTD Keywords: biomimetic nanoparticles, cancer treatment, diagnosis, drug-delivery, erythrocyte-membrane, facile synthesis, iron-oxide nanoparticles, magnetic nanoparticles, membrane-camouflaged nanoparticles, metastatic breast-cancer, size, stem-cells, Biomimetic nanoparticles, Cancer treatment, Membrane-camouflaged nanoparticles, Photothermal therapy


Xu, DD, Hu, J, Pan, X, Sánchez, S, Yan, XH, Ma, X, (2021). Enzyme-Powered Liquid Metal Nanobots Endowed with Multiple Biomedical Functions Acs Nano 15, 11543-11554

Catalytically powered micro/nanobots (MNBs) can perform active movement by harnessing energy from in situ chemical reactions and show tremendous potential in biomedical applications. However, the development of imageable MNBs that are driven by bioavailable fuels and possess multiple therapeutic functions remains challenging. To resolve such issues, we herein propose enzyme (urease) powered liquid metal (LM) nanobots that are naturally of multiple therapeutic functions and imaging signals. The main body of the nanobot is composed of a biocompatible LM nanoparticle encapsulated by polydopamine (PDA). Urease enzyme needed for the powering and desired drug molecules, e.g., cefixime trihydrate antibiotic, are grafted on external surfaces of the PDA shell. Such a chemical composition endows the nanobots with dual-mode ultrasonic (US) and photoacoustic (PA) imaging signals and favorable photothermal effect. These LM nanobots exhibit positive chemotaxis and therefore can be collectively guided along a concentration gradient of urea for targeted transportation. When exposed to NIR light, the LM nanobots would deform and complete the function change from active drug carriers to photothermal reagents, to achieve synergetic antibacterial treatment by both photothermal and chemotherapeutic effects. The US and PA properties of the LM nanoparticle can be used to not only track and monitor the active movement of the nanobots in a microfluidic vessel model but also visualize their dynamics in the bladder of a living mouse in vivo. To conclude, the LM nanobots demonstrated herein represent a proof-of-concept therapeutic nanosystem with multiple biomedical functionalities, providing a feasible tool for preclinical studies and clinical trials of MNB-based imaging-guided therapy.

JTD Keywords: cell, chemo-photothermal therapy, chemotaxis, image tracking, liquid metal nanobots, nanomotors, tracking, Chemo-photothermal therapy, Chemotaxis, Image tracking, Liquid metal nanobots, Nanomotors


Puiggalí-Jou, A, Wedepohl, S, Theune, LE, Alemán, C, Calderón, M, (2021). Effect of conducting/thermoresponsive polymer ratio on multitasking nanogels Materials Science & Engineering C-Materials For Biological Applications 119, 111598

© 2020 Elsevier B.V. Semi-interpenetrated nanogels (NGs) able to release and sense diclofenac (DIC) have been designed to act as photothermal agents with the possibility to ablate cancer cells using mild-temperatures (<45 °C). Combining mild heat treatments with simultaneous chemotherapy appears as a very promising therapeutic strategy to avoid heat resistance or damaging the surrounding tissues. Particularly, NGs consisted on a poly(N-isopropylacrylamide) (PNIPAM) and dendritic polyglycerol (dPG) mesh containing a semi-interpenetrating network (SIPN) of poly(hydroxymethyl 3,4-ethylenedioxythiophene) (PHMeEDOT). The PHMeEDOT acted as photothermal and conducting agent, while PNIPAM-dPG NG provided thermoresponsivity and acted as stabilizer. We studied how semi-interpenetration modified the physicochemical characteristics of the thermoresponsive SIPN NGs and selected the best condition to generate a multifunctional photothermal agent. The thermoswitchable conductiveness of the multifunctional NGs and the redox activity of DIC could be utilized for its electrochemical detection. Besides, as proof of the therapeutic concept, we investigated the combinatorial effect of photothermal therapy (PTT) and DIC treatment using the HeLa cancer cell line in vitro. Within 15 min NIR irradiation without surpassing 45 °C we were able to kill 95% of the cells, demonstrating the potential of SIPN NGs as drug carriers, sensors and agents for mild PTT.

JTD Keywords: cells, cellulose, conducting polymers, controlled delivery, diclofenac, efficiency, electrochemical oxidation, electrochemical sensors, nanogels, nanoparticles, photothermal therapy, pnipam, poly(3,4-ethylenedioxythiophene), Conducting polymers, Electrochemical sensors, Nanogels, Photothermal therapy