by Keyword: Respiration
Rodriguez, J, Schulz, S, Voss, A, Herrera, S, Benito, S, Giraldo, BF, (2023). Baroreflex activity through the analysis of the cardio-respiratory variability influence over blood pressure in cardiomyopathy patients Frontiers In Physiology 14, 1184293
A large portion of the elderly population are affected by cardiovascular diseases. Early prognosis of cardiomyopathies remains a challenge. The aim of this study was to classify cardiomyopathy patients by their etiology based on significant indexes extracted from the characterization of the baroreflex mechanism in function of the influence of the cardio-respiratory activity over the blood pressure. Forty-one cardiomyopathy patients (CMP) classified as ischemic (ICM-24 patients) and dilated (DCM-17 patients) were considered. In addition, thirty-nine control (CON) subjects were used as reference. The beat-to-beat (BBI) time series, from the electrocardiographic (ECG) signal, the systolic (SBP), and diastolic (DBP) time series, from the blood pressure signal (BP), and the respiratory time (TT), from the respiratory flow (RF) signal, were extracted. The three-dimensional representation of the cardiorespiratory and vascular activities was characterized geometrically, by fitting a polygon that contains 95% of data, and by statistical descriptive indices. DCM patients presented specific patterns in the respiratory response to decreasing blood pressure activity. ICM patients presented more stable cardiorespiratory activity in comparison with DCM patients. In general, CMP shown limited ability to regulate changes in blood pressure. In addition, patients also shown a limited ability of their cardiac and respiratory systems response to regulate incremental changes of the vascular variability and a lower heart rate variability. The best classifiers were used to build support vector machine models. The optimal model to classify ICM versus DCM patients achieved 92.7% accuracy, 94.1% sensitivity, and 91.7% specificity. When comparing CMP patients and CON subjects, the best model achieved 86.2% accuracy, 82.9% sensitivity, and 89.7% specificity. When comparing ICM patients and CON subjects, the best model achieved 88.9% accuracy, 87.5% sensitivity, and 89.7% specificity. When comparing DCM patients and CON subjects, the best model achieved 87.5% accuracy, 76.5% sensitivity, and 92.3% specificity. In conclusion, this study introduced a new method for the classification of patients by their etiology based on new indices from the analysis of the baroreflex mechanism.Copyright © 2023 Rodriguez, Schulz, Voss, Herrera, Benito and Giraldo.
JTD Keywords: abnormalities, blood pressure variability, cardio-respiratory variability, dilated cardiomyopathy, disease, heart-failure secondary, ischemic cardiomyopathy, ischemic-dilated cardiomyopathy, morphology-relative change, Baroreflex activity, Blood pressure variability, Cardio-respiratory variability, Cheyne-stokes respiration, Ischemic-dilated cardiomyopathy, Morphology-relative change
Gomila, AMJ, Pérez-Mejías, G, Nin-Hill, A, Guerra-Castellano, A, Casas-Ferrer, L, Ortiz-Tescari, S, Díaz-Quintana, A, Samitier, J, Rovira, C, De la Rosa, MA, Díaz-Moreno, I, Gorostiza, P, Giannotti, MI, Lagunas, A, (2022). Phosphorylation disrupts long-distance electron transport in cytochrome c Nature Communications 13, 7100
It has been recently shown that electron transfer between mitochondrial cytochrome c and the cytochrome c1 subunit of the cytochrome bc1 can proceed at long-distance through the aqueous solution. Cytochrome c is thought to adjust its activity by changing the affinity for its partners via Tyr48 phosphorylation, but it is unknown how it impacts the nanoscopic environment, interaction forces, and long-range electron transfer. Here, we constrain the orientation and separation between cytochrome c1 and cytochrome c or the phosphomimetic Y48pCMF cytochrome c, and deploy an array of single-molecule, bulk, and computational methods to investigate the molecular mechanism of electron transfer regulation by cytochrome c phosphorylation. We demonstrate that phosphorylation impairs long-range electron transfer, shortens the long-distance charge conduit between the partners, strengthens their interaction, and departs it from equilibrium. These results unveil a nanoscopic view of the interaction between redox protein partners in electron transport chains and its mechanisms of regulation.© 2022. The Author(s).
JTD Keywords: apoptosis, binding, cardiolipin, complex, dynamics, force, respiration, structural basis, tyrosine phosphorylation, Histone chaperone activity
Arboleda, A, Amado, L, Rodriguez, J, Naranjo, F, Giraldo, BF, (2021). A new protocol to compare successful versus failed patients using the electromyographic diaphragm signal in extubation process Conference Proceedings : ... Annual International Conference Of The Ieee Engineering In Medicine And Biology Society. Ieee Engineering In Medicine And Biology Society. Conference , 5646-5649
In clinical practice, when a patient is undergoing mechanical ventilation, it is important to identify the optimal moment for extubation, minimizing the risk of failure. However, this prediction remains a challenge in the clinical process. In this work, we propose a new protocol to study the extubation process, including the electromyographic diaphragm signal (diaEMG) recorded through 5-channels with surface electrodes around the diaphragm muscle. First channel corresponds to the electrode on the right. A total of 40 patients in process of withdrawal of mechanical ventilation, undergoing spontaneous breathing tests (SBT), were studied. According to the outcome of the SBT, the patients were classified into two groups: successful (SG: 19 patients) and failure (FG: 21 patients) groups. Parameters extracted from the envelope of each channel of diaEMG in time and frequency domain were studied. After analyzing all channels, the second presented maximum differences when comparing the two groups of patients, with parameters related to root mean square (p = 0.005), moving average (p = 0.001), and upward slope (p = 0.017). The third channel also presented maximum differences in parameters as the time between maximum peak (p = 0.004), and the skewness (p = 0.027). These results suggest that diaphragm EMG signal could contribute to increase the knowledge of the behaviour of respiratory system in these patients and improve the extubation process.Clinical Relevance - This establishes the characterization of success and failure patients in the extubation process. © 2021 IEEE.
JTD Keywords: classification, recognition, Airway extubation, Artificial ventilation, Clinical practices, Clinical process, Diaphragm, Diaphragm muscle, Diaphragms, Electrodes, Electromyographic, Extubation, Frequency domain analysis, Human, Humans, Maximum differences, Mechanical ventilation, New protocol, Respiration, artificial, Respiratory system, Risk of failure, Spontaneous breathing, Surface electrode, Surface emg signals, Thorax, Ventilation, Ventilator weaning
Andreu, I, Falcones, B, Hurst, S, Chahare, N, Quiroga, X, Le Roux, AL, Kechagia, Z, Beedle, AEM, Elosegui-Artola, A, Trepat, X, Farre, R, Betz, T, Almendros, I, Roca-Cusachs, P, (2021). The force loading rate drives cell mechanosensing through both reinforcement and cytoskeletal softening Nature Communications 12, 4229
Cell response to force regulates essential processes in health and disease. However, the fundamental mechanical variables that cells sense and respond to remain unclear. Here we show that the rate of force application (loading rate) drives mechanosensing, as predicted by a molecular clutch model. By applying dynamic force regimes to cells through substrate stretching, optical tweezers, and atomic force microscopy, we find that increasing loading rates trigger talin-dependent mechanosensing, leading to adhesion growth and reinforcement, and YAP nuclear localization. However, above a given threshold the actin cytoskeleton softens, decreasing loading rates and preventing reinforcement. By stretching rat lungs in vivo, we show that a similar phenomenon may occur. Our results show that cell sensing of external forces and of passive mechanical parameters (like tissue stiffness) can be understood through the same mechanisms, driven by the properties under force of the mechanosensing molecules involved. Cells sense mechanical forces from their environment, but the precise mechanical variable sensed by cells is unclear. Here, the authors show that cells can sense the rate of force application, known as the loading rate, with effects on YAP nuclear localization and cytoskeletal stiffness remodelling.
JTD Keywords: Actin cytoskeleton, Actin filament, Actin-filament, Adhesion, Animal, Animals, Atomic force microscopy, Breathing, Cell, Cell adhesion, Cell culture, Cell nucleus, Cells, cultured, Cytoplasm, Extracellular-matrix, Fibroblast, Fibroblasts, Fibronectin, Frequency, Gene knockdown, Gene knockdown techniques, Genetics, Germfree animal, Integrin, Intracellular signaling peptides and proteins, Knockout mouse, Lung, Male, Mechanotransduction, Mechanotransduction, cellular, Metabolism, Mice, Mice, knockout, Microscopy, atomic force, Mouse, Optical tweezers, Paxillin, Physiology, Primary cell culture, Pxn protein, mouse, Rat, Rats, Rats, sprague-dawley, Respiration, Signal peptide, Softening, Specific pathogen-free organisms, Sprague dawley rat, Stress, Substrate, Substrate rigidity, Talin, Talin protein, mouse, Tln2 protein, mouse, Traction, Transmission, Ultrastructure, Yap1 protein, rat
Molina, BG, Valle, LJ, Casanovas, J, Lanzalaco, S, Pérez-Madrigal, MM, Turon, P, Armelin, E, Alemán, C, (2021). Plasma-Functionalized Isotactic Polypropylene Assembled with Conducting Polymers for Bacterial Quantification by NADH Sensing Advanced Healthcare Materials 10, 2100425
Rapid detection of bacterial presence on implantable medical devices is essential to prevent biofilm formation, which consists of densely packed bacteria colonies able to withstand antibiotic-mediated killing. In this work, a smart approach is presented to integrate electrochemical sensors for detecting bacterial infections in biomedical implants made of isotactic polypropylene (i-PP) using chemical assembly. The electrochemical detection is based on the capacity of conducting polymers (CPs) to detect extracellular nicotinamide adenine dinucleotide (NADH) released from cellular respiration of bacteria, which allows distinguishing prokaryotic from eukaryotic cells. Oxygen plasma-functionalized free-standing i-PP, coated with a layer (≈1.1 µm in thickness) of CP nanoparticles obtained by oxidative polymerization, is used as working electrode for the anodic polymerization of a second CP layer (≈8.2 µm in thickness), which provides very high electrochemical activity and stability. The resulting layered material, i-PP /CP , detects the electro-oxidation of NADH in physiological media with a sensitivity 417 µA cm and a detection limit up to 0.14 × 10 m, which is below the concentration of extracellular NADH found for bacterial cultures of biofilm-positive and biofilm-negative strains. f 2 −2 −3
JTD Keywords: bacteria respiration, bacteria sensors, biomedical implants, flexible sensors, poly(3,4-ethylenedioxythiophene), Bacteria respiration, Bacteria sensors, Biomedical implants, Flexible sensors, Poly(3,4-ethylenedioxythiophene)
Ziyatdinov, Andrey, Fonollosa, Jordi, Fernández, Luis, Gutiérrez-Gálvez, Agustín, Marco, Santiago, Perera, Alexandre, (2015). Data set from gas sensor array under flow modulation Data in Brief 3, 131-136
Abstract Recent studies in neuroscience suggest that sniffing, namely sampling odors actively, plays an important role in olfactory system, especially in certain scenarios such as novel odorant detection. While the computational advantages of high frequency sampling have not been yet elucidated, here, in order to motivate further investigation in active sampling strategies, we share the data from an artificial olfactory system made of 16 MOX gas sensors under gas flow modulation. The data were acquired on a custom set up featured by an external mechanical ventilator that emulates the biological respiration cycle. 58 samples were recorded in response to a relatively broad set of 12 gas classes, defined from different binary mixtures of acetone and ethanol in air. The acquired time series show two dominant frequency bands: the low-frequency signal corresponds to a conventional response curve of a sensor in response to a gas pulse, and the high-frequency signal has a clear principal harmonic at the respiration frequency. The data are related to the study in [1], and the data analysis results reported there should be considered as a reference point.
JTD Keywords: Gas sensor array, MOX sensor, Flow modulation, Early detection, Biomimetics, Respiration, Sniffing
Giraldo, B. F., Tellez, J. P., Herrera, S., Benito, S., (2013). Analysis of heart rate variability in elderly patients with chronic heart failure during periodic breathing CinC 2013 Computing in Cardiology Conference (CinC) , IEEE (Zaragoza, Spain) , 991-994
Assessment of the dynamic interactions between cardiovascular signals can provide valuable information that improves the understanding of cardiovascular control. Heart rate variability (HRV) analysis is known to provide information about the autonomic heart rate modulation mechanism. Using the HRV signal, we aimed to obtain parameters for classifying patients with and without chronic heart failure (CHF), and with periodic breathing (PB), non-periodic breathing (nPB), and Cheyne-Stokes respiration (CSR) patterns. An electrocardiogram (ECG) and a respiratory flow signal were recorded in 36 elderly patients: 18 patients with CHF and 18 patients without CHF. According to the clinical criteria, the patients were classified into the follow groups: 19 patients with nPB pattern, 7 with PB pattern, 4 with Cheyne-Stokes respiration (CSR), and 6 non-classified patients (problems with respiratory signal). From the HRV signal, parameters in the time and frequency domain were calculated. Frequency domain parameters were the most discriminant in comparisons of patients with and without CHF: PTot (p = 0.02), PLF (p = 0.022) and fpHF (p = 0.021). For the comparison of the nPB vs. CSR patients groups, the best parameters were RMSSD (p = 0.028) and SDSD (p = 0.028). Therefore, the parameters appear to be suitable for enhanced diagnosis of decompensated CHF patients and the possibility of developed periodic breathing and a CSR pattern.
JTD Keywords: cardiovascular system, diseases, electrocardiography, frequency-domain analysis, geriatrics, medical signal processing, patient diagnosis, pneumodynamics, signal classification, Cheyne-Stokes respiration patterns, ECG, autonomic heart rate modulation mechanism, cardiovascular control, cardiovascular signals, chronic heart failure, decompensated CHF patients, dynamic interaction assessment, elderly patients, electrocardiogram, enhanced diagnosis, frequency domain parameters, heart rate variability analysis, patient classification, periodic breathing, respiratory flow signal recording, Electrocardiography, Frequency modulation, Frequency-domain analysis, Heart rate variability, Senior citizens, Standards
Hernando, D., Alcaine, A., Pueyo, E., Laguna, P., Orini, M., Arcentales, A., Giraldo, B., Voss, A., Bayes-Genis, A., Bailon, R., (2013). Influence of respiration in the very low frequency modulation of QRS slopes and heart rate variability in cardiomyopathy patients CinC 2013 Computing in Cardiology Conference (CinC) , IEEE (Zaragoza, Spain) , 117-120
This work investigates the very low frequency (VLF) modulation of QRS slopes and heart rate variability (HRV). Electrocardiogram (ECG) and respiratory flow signal were acquired from patients with dilated cardiomyopathy and ischemic cardiomyopathy. HRV as well as the upward QRS slope (IUS) and downward QRS slope (IDS) were extracted from the ECG. The relation between HRV and QRS slopes in the VLF band was measured using ordinary coherence in 5-minute segments. Partial coherence was then used to remove the influence that respiration simultaneously exerts on HRV and QRS slopes. A statistical threshold was determined, below which coherence values were considered not to represent a linear relation. 7 out of 276 segments belonging to 5 out of 29 patients for IUS and 10 segments belonging to 5 patients for IDS presented a VLF modulation in QRS slopes, HRV and respiration. In these segments spectral coherence was statistically significant, while partial coherence decreased, indicating that the coupling HRV and QRS slopes was related to respiration. 4 segments had a partial coherence value below the threshold for IUS, 3 segments for IDS. The rest of the segments also presented a notable decrease in partial coherence, but still above the threshold, which means that other non-linearly effects may also affect this modulation.
JTD Keywords: diseases, electrocardiography, feature extraction, medical signal processing, pneumodynamics, statistical analysis, ECG, QRS slopes, cardiomyopathy patients, dilated cardiomyopathy, electrocardiogram, feature extraction, heart rate variability, ischemic cardiomyopathy, ordinary coherence, partial coherence value, respiration, respiratory flow signal acquisition, spectral coherence, statistical threshold, time 5 min, very low frequency modulation, Coherence, Educational institutions, Electrocardiography, Frequency modulation, Heart rate variability
Giraldo, B. F., Tellez, J. P., Herrera, S., Benito, S., (2013). Study of the oscillatory breathing pattern in elderly patients Engineering in Medicine and Biology Society (EMBC) 35th Annual International Conference of the IEEE , IEEE (Osaka, Japan) , 5228-5231
Some of the most common clinical problems in elderly patients are related to diseases of the cardiac and respiratory systems. Elderly patients often have altered breathing patterns, such as periodic breathing (PB) and Cheyne-Stokes respiration (CSR), which may coincide with chronic heart failure. In this study, we used the envelope of the respiratory flow signal to characterize respiratory patterns in elderly patients. To study different breathing patterns in the same patient, the signals were segmented into windows of 5 min. In oscillatory breathing patterns, frequency and time-frequency parameters that characterize the discriminant band were evaluated to identify periodic and non-periodic breathing (PB and nPB). In order to evaluate the accuracy of this characterization, we used a feature selection process, followed by linear discriminant analysis. 22 elderly patients (7 patients with PB and 15 with nPB pattern) were studied. The following classification problems were analyzed: patients with either PB (with and without apnea) or nPB patterns, and patients with CSR versus PB, CSR versus nPB and PB versus nPB patterns. The results showed 81.8% accuracy in the comparisons of nPB and PB patients, using the power of the modulation peak. For the segmented signal, the power of the modulation peak, the frequency variability and the interquartile ranges provided the best results with 84.8% accuracy, for classifying nPB and PB patients.
JTD Keywords: cardiovascular system, diseases, feature extraction, geriatrics, medical signal processing, oscillations, pneumodynamics, signal classification, time-frequency analysis, Cheyne-Stokes respiration, apnea, cardiac systems, chronic heart failure, classification problems, discriminant band, diseases, elderly patients, feature selection process, frequency variability, interquartile ranges, linear discriminant analysis, nonperiodic breathing, oscillatory breathing pattern, periodic breathing, respiratory How signal, respiratory systems, signal segmentation, time 5 min, time-frequency parameters, Accuracy, Aging, Frequency modulation, Heart, Senior citizens, Time-frequency analysis
Garde, A., Giraldo, B.F., Jané, R., Latshang, T.D., Turk, A.J., Hess, T., Bosch, M-.M., Barthelmes, D., Hefti, J.P., Maggiorini, M., Hefti, U., Merz, T.M., Schoch, O.D., Bloch, K.E., (2012). Periodic breathing during ascent to extreme altitude quantified by spectral analysis of the respiratory volume signal Engineering in Medicine and Biology Society (EMBC) 34th Annual International Conference of the IEEE , IEEE (San Diego, USA) , 707-710
High altitude periodic breathing (PB) shares some common pathophysiologic aspects with sleep apnea, Cheyne-Stokes respiration and PB in heart failure patients. Methods that allow quantifying instabilities of respiratory control provide valuable insights in physiologic mechanisms and help to identify therapeutic targets. Under the hypothesis that high altitude PB appears even during physical activity and can be identified in comparison to visual analysis in conditions of low SNR, this study aims to identify PB by characterizing the respiratory pattern through the respiratory volume signal. A number of spectral parameters are extracted from the power spectral density (PSD) of the volume signal, derived from respiratory inductive plethysmography and evaluated through a linear discriminant analysis. A dataset of 34 healthy mountaineers ascending to Mt. Muztagh Ata, China (7,546 m) visually labeled as PB and non periodic breathing (nPB) is analyzed. All climbing periods within all the ascents are considered (total climbing periods: 371 nPB and 40 PB). The best crossvalidated result classifying PB and nPB is obtained with Pm (power of the modulation frequency band) and R (ratio between modulation and respiration power) with an accuracy of 80.3% and area under the receiver operating characteristic curve of 84.5%. Comparing the subjects from 1st and 2nd ascents (at the same altitudes but the latter more acclimatized) the effect of acclimatization is evaluated. SaO2 and periodic breathing cycles significantly increased with acclimatization (p-value <; 0.05). Higher Pm and higher respiratory frequencies are observed at lower SaO2, through a significant negative correlation (p-value <; 0.01). Higher Pm is observed at climbing periods visually labeled as PB with >; 5 periodic breathing cycles through a significant positive correlation (p-value <; 0.01). Our data demonstrate that quantification of the respiratory volum- signal using spectral analysis is suitable to identify effects of hypobaric hypoxia on control of breathing.
JTD Keywords: Frequency domain analysis, Frequency modulation, Heart, Sleep apnea, Ventilation, Visualization, Cardiology, Medical disorders, Medical signal processing, Plethysmography, Pneumodynamics, Sensitivity analysis, Sleep, Spectral analysis, Cheyne-Stokes respiration, Climbing periods, Dataset, Heart failure patients, High altitude PB, High altitude periodic breathing, Hypobaric hypoxia, Linear discriminant analysis, Pathophysiologic aspects, Physical activity, Physiologic mechanisms, Power spectral density, Receiver operating characteristic curve, Respiratory control, Respiratory frequency, Respiratory inductive plethysmography, Respiratory pattern, Respiratory volume signal, Sleep apnea, Spectral analysis, Spectral parameters
Orini, Michele, Giraldo, Beatriz F., Bailon, Raquel, Vallverdu, Montserrat, Mainardi, Luca, Benito, Salvador, Diaz, Ivan, Caminal, Pere, (2008). Time-frequency analysis of cardiac and respiratory parameters for the prediction of ventilator weaning IEEE Engineering in Medicine and Biology Society Conference Proceedings 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (ed. IEEE), IEEE (Vancouver, Canada) 1-8, 2793-2796
Mechanical ventilators are used to provide life support in patients with respiratory failure. Assessing autonomic control during the ventilator weaning provides information about physiopathological imbalances. Autonomic parameters can be derived and used to predict success in discontinuing from the mechanical support. Time-frequency analysis is used to derive cardiac and respiratory parameters, as well as their evolution in time, during ventilator weaning in 130 patients. Statistically significant differences have been observed in autonomic parameters between patients who are considered ready for spontaneous breathing and patients who are not. A classification based on respiratory frequency, heart rate and heart rate variability spectral components has been proposed and has been able to correctly classify more than 80% of the cases.
JTD Keywords: Automatic Data Processing, Databases, Factual, Electrocardiography, Humans, Models, Statistical, Respiration, Respiration, Artificial, Respiratory Insufficiency, Respiratory Mechanics, Respiratory Muscles, Signal Processing, Computer-Assisted, Time Factors, Ventilator Weaning, Ventilators, Mechanical, Work of Breathing